Volatile Organic Compounds in Exhaled Breath: A Promising Approach for Accurate Differentiation of Lung Adenocarcinoma and Squamous Cell Carcinoma

腺癌 呼气 基底细胞 肺癌 气体分析呼吸 内科学 化学 病理 肿瘤科 癌症研究 医学 癌症 放射科 色谱法
作者
Li X,Lin Shi,Yijing Long,Chunyan Wang,Qian Cheng,Wenwen Li,Yonghui Tian,Yixiang Duan
出处
期刊:Journal of Breath Research [IOP Publishing]
卷期号:18 (4): 046007-046007 被引量:2
标识
DOI:10.1088/1752-7163/ad6474
摘要

Abstract Lung cancer subtyping, particularly differentiating adenocarcinoma (ADC) from squamous cell carcinoma (SCC), is paramount for clinicians to develop effective treatment strategies. In this study, we aimed: (i) to discover volatile organic compound (VOC) biomarkers for precise diagnosis of ADC and SCC, (ii) to investigated the impact of risk factors on ADC and SCC prediction, and (iii) to explore the metabolic pathways of VOC biomarkers. Exhaled breath samples from patients with ADC ( n = 149) and SCC ( n = 94) were analyzed by gas chromatography-mass spectrometry. Both multivariate and univariate statistical analysis method were employed to identify VOC biomarkers. Support vector machine (SVM) prediction models were developed and validated based on these VOC biomarkers. The impact of risk factors on ADC and SCC prediction was investigated. A panel of 13 VOCs was found to differ significantly between ADC and SCC. Utilizing the SVM algorithm, the VOC biomarkers achieved a specificity of 90.48%, a sensitivity of 83.50%, and an area under the curve (AUC) value of 0.958 on the training set. On the validation set, these VOC biomarkers attained a predictive power of 85.71% for sensitivity and 73.08% for specificity, along with an AUC value of 0.875. Clinical risk factors exhibit certain predictive power on ADC and SCC prediction. Integrating these risk factors into the prediction model based on VOC biomarkers can enhance its predictive accuracy. This work indicates that exhaled breath holds the potential to precisely detect ADCs and SCCs. Considering clinical risk factors is essential when differentiating between these two subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助150
刚刚
刚刚
1秒前
星辰大海应助dududu采纳,获得30
1秒前
1秒前
2秒前
思源应助lala采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
漫漫发布了新的文献求助10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Bio应助科研通管家采纳,获得30
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
三告完成签到,获得积分10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
devoe发布了新的文献求助10
3秒前
Bio应助科研通管家采纳,获得30
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
小马甲应助小梁要加油采纳,获得10
3秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
故意的马里奥完成签到,获得积分10
4秒前
情怀应助科研通管家采纳,获得30
4秒前
4秒前
Ava应助又是许想想采纳,获得10
5秒前
6秒前
6秒前
淡然梦芝完成签到,获得积分10
6秒前
张张张xxx发布了新的文献求助10
6秒前
文艺的胖虎完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109721
求助须知:如何正确求助?哪些是违规求助? 4318341
关于积分的说明 13454127
捐赠科研通 4148336
什么是DOI,文献DOI怎么找? 2273150
邀请新用户注册赠送积分活动 1275295
关于科研通互助平台的介绍 1213562