Prediction of Ischemic Stroke Functional Outcomes from Acute-Phase Noncontrast CT and Clinical Information

医学 冲程(发动机) 缺血性中风 放射科 内科学 心脏病学 缺血 机械工程 工程类
作者
Yongkai Liu,Yannan Yu,Jiahong Ouyang,Bin Jiang,Sophie Ostmeier,Jia Wang,Sarah Ying Lu-Liang,Yirong Yang,Guang Yang,Patrik Michel,David S. Liebeskind,Maarten G. Lansberg,Michael E. Moseley,Jeremy J Heit,Max Wintermark,Gregory W. Albers,Greg Zaharchuk
出处
期刊:Radiology [Radiological Society of North America]
卷期号:313 (1) 被引量:2
标识
DOI:10.1148/radiol.240137
摘要

Background Clinical outcome prediction based on acute-phase ischemic stroke data is valuable for planning health care resources, designing clinical trials, and setting patient expectations. Existing methods require individualized features and often involve manually engineered, time-consuming postprocessing activities. Purpose To predict the 90-day modified Rankin Scale (mRS) score with a deep learning (DL) model fusing noncontrast-enhanced CT (NCCT) and clinical information from the acute phase of stroke. Materials and Methods This retrospective study included data from six patient datasets from four multicenter trials and two registries. The DL-based imaging and clinical model was trained by using NCCT data obtained 1-7 days after baseline imaging and clinical data (age; sex; baseline and 24-hour National Institutes of Health Stroke Scale scores; and history of hypertension, diabetes, and atrial fibrillation). This model was compared with models based on either NCCT or clinical information alone. Model-specific mRS score prediction accuracy, mRS score accuracy within 1 point of the actual mRS score, mean absolute error (MAE), and performance in identifying unfavorable outcomes (mRS score, >2) were evaluated. Results A total of 1335 patients (median age, 71 years; IQR, 60-80 years; 674 female patients) were included for model development and testing through sixfold cross validation, with distributions of 979, 133, and 223 patients across training, validation, and test sets in each of the six cross-validation folds, respectively. The fused model achieved an MAE of 0.94 (95% CI: 0.89, 0.98) for predicting the specific mRS score, outperforming the imaging-only (MAE, 1.10; 95% CI: 1.05, 1.16;
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
九思发布了新的文献求助10
3秒前
汪洋一叶完成签到,获得积分10
3秒前
小青椒应助独特的绯采纳,获得50
3秒前
3秒前
英俊的铭应助追寻谷菱采纳,获得10
5秒前
炽天使发布了新的文献求助10
5秒前
5秒前
岩崖发布了新的文献求助10
5秒前
桐桐应助淼队采纳,获得10
6秒前
fengh峰发布了新的文献求助10
7秒前
琳琳完成签到,获得积分10
7秒前
7秒前
evans完成签到,获得积分10
8秒前
8秒前
Meyako应助二三采纳,获得10
8秒前
9秒前
研友_VZG7GZ应助单薄谷冬采纳,获得10
9秒前
九思完成签到,获得积分10
10秒前
10秒前
lorenzo5zz发布了新的文献求助10
10秒前
11秒前
香蕉觅云应助科研小白白采纳,获得10
11秒前
大孙发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
EmperorHuaji关注了科研通微信公众号
15秒前
JamesPei应助bbb采纳,获得10
15秒前
orixero应助张献忠采纳,获得30
15秒前
贴贴发布了新的文献求助10
16秒前
LLZZCC发布了新的文献求助10
17秒前
18秒前
Skuld应助甜甜映菡采纳,获得10
18秒前
18秒前
18秒前
Wally发布了新的文献求助10
19秒前
vivian完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4276578
求助须知:如何正确求助?哪些是违规求助? 3805432
关于积分的说明 11923863
捐赠科研通 3452228
什么是DOI,文献DOI怎么找? 1893267
邀请新用户注册赠送积分活动 943512
科研通“疑难数据库(出版商)”最低求助积分说明 847334