Intelligent diagnosis of Kawasaki disease from real-world data using interpretable machine learning models

可解释性 人工智能 机器学习 医学 梯度升压 血沉 接收机工作特性 逻辑回归 阿达布思 川崎病 决策树 Boosting(机器学习) 分类器(UML) 杠杆(统计) 判别式 随机森林 计算机科学 内科学 动脉
作者
Yifan Duan,Ruiqi Wang,Zhilin Huang,Haoran Chen,Mingkun Tang,Jiayin Zhou,Zhengyong Hu,Wanfei Hu,Zhenli Chen,Qing Qian,Haolin Wang
出处
期刊:Hellenic Journal of Cardiology [Elsevier BV]
被引量:3
标识
DOI:10.1016/j.hjc.2024.08.003
摘要

This study aimed to leverage real-world electronic medical record (EMR) data to develop interpretable machine learning models for diagnosis of Kawasaki disease, while also exploring and prioritizing the significant risk factors. A comprehensive study was conducted on 4,087 pediatric patients at the Children's Hospital of Chongqing, China. The study collected demographic data, physical examination results, and laboratory findings. Statistical analyses were performed using SPSS 26.0. The optimal feature subset was employed to develop intelligent diagnostic prediction models based on the Light Gradient Boosting Machine (LGBM), Explainable Boosting Machine (EBM), Gradient Boosting Classifier (GBC), Fast Interpretable Greedy-Tree Sums (FIGS), Decision Tree (DT), AdaBoost Classifier (AdaBoost), and Logistic Regression (LR). Model performance was evaluated in three dimensions: discriminative ability via Receiver Operating Characteristic curves, calibration accuracy using calibration curves, and interpretability through Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME). In this study, Kawasaki disease was diagnosed in 2,971 participants. Analysis was conducted on 31 indicators, including red blood cell distribution width and erythrocyte sedimentation rate. The EBM model demonstrated superior performance compared to other models, with an Area Under the Curve (AUC) of 0.97, second only to the GBC model. Furthermore, the EBM model exhibited the highest calibration accuracy and maintained its interpretability without relying on external analytical tools like SHAP and LIME, thus reducing interpretation biases. Platelet distribution width, total protein, and erythrocyte sedimentation rate were identified by the model as significant predictors for the diagnosis of Kawasaki disease. This study employed diverse machine learning models for early diagnosis of Kawasaki disease. The findings demonstrated that interpretable models, like EBM, outperformed traditional machine learning models in terms of both interpretability and performance. Ensuring consistency between predictive models and clinical evidence is crucial for the successful integration of artificial intelligence into real-world clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
ding应助安白采纳,获得10
3秒前
3秒前
赵鹏发布了新的文献求助10
3秒前
牙瓜完成签到 ,获得积分10
3秒前
3秒前
4秒前
谨慎志泽发布了新的文献求助10
4秒前
万能图书馆应助文文文采纳,获得10
5秒前
混子发布了新的文献求助10
6秒前
强小强发布了新的文献求助10
7秒前
超级如风完成签到,获得积分10
9秒前
YM完成签到,获得积分10
9秒前
微不足道发布了新的文献求助10
10秒前
月初发布了新的文献求助10
11秒前
香蕉觅云应助xona采纳,获得10
12秒前
聪聪完成签到,获得积分10
12秒前
直率无春完成签到,获得积分10
13秒前
14秒前
华仔应助俊逸的石头采纳,获得10
14秒前
14秒前
聪聪发布了新的文献求助10
17秒前
17秒前
1101592875发布了新的文献求助30
17秒前
18秒前
19秒前
李健的小迷弟应助逆天了采纳,获得10
19秒前
完美世界应助clyhg采纳,获得10
19秒前
赵鹏完成签到,获得积分10
19秒前
akaashi发布了新的文献求助80
19秒前
zerolake发布了新的文献求助10
19秒前
20秒前
微不足道完成签到,获得积分10
20秒前
Singularity应助浅晨采纳,获得10
20秒前
虚心的阿松完成签到,获得积分10
21秒前
复杂涵柏发布了新的文献求助10
22秒前
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930381
求助须知:如何正确求助?哪些是违规求助? 3475288
关于积分的说明 10986321
捐赠科研通 3205392
什么是DOI,文献DOI怎么找? 1771449
邀请新用户注册赠送积分活动 858995
科研通“疑难数据库(出版商)”最低求助积分说明 796906