Mapping Blood Lead Levels in China during 1980–2040 with Machine Learning

中国 铅中毒 血铅水平 心理干预 铅(地质) 人口学 社会经济地位 环境卫生 地理 煤燃烧产物 铅暴露 医学 人口 生物 古生物学 考古 精神科 社会学 内科学
作者
Yanni Zhang,Mengling Tang,Shuyou Zhang,Yaoyao Lin,Kaixuan Yang,Yadi Yang,Jiangjiang Zhang,Jun Man,Iason Verginelli,Chaofeng Shen,Jian Luo,Yongming Luo,Yijun Yao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (17): 7270-7278 被引量:10
标识
DOI:10.1021/acs.est.3c09788
摘要

Lead poisoning is globally concerning, yet limited testing hinders effective interventions in most countries. We aimed to create annual maps of county-specific blood lead levels in China from 1980 to 2040 using a machine learning model. Blood lead data from China were sourced from 1180 surveys published between 1980 and 2022. Additionally, regional statistical figures for 15 natural and socioeconomic variables were obtained or estimated as predictors. A machine learning model, using the random forest algorithm and 2973 generated samples, was created to predict county-specific blood lead levels in China from 1980 to 2040. Geometric mean blood lead levels in children (i.e., age 14 and under) decreased significantly from 104.4 μg/L in 1993 to an anticipated 40.3 μg/L by 2040. The number exceeding 100 μg/L declined dramatically, yet South Central China remains a hotspot. Lead exposure is similar among different groups, but overall adults and adolescents (i.e., age over 14), females, and rural residents exhibit slightly lower exposure compared to that of children, males, and urban residents, respectively. Our predictions indicated that despite the general reduction, one-fourth of Chinese counties rebounded during 2015-2020. This slower decline might be due to emerging lead sources like smelting and coal combustion; however, the primary factor driving the decline should be the reduction of a persistent source, legacy gasoline-derived lead. Our approach innovatively maps lead exposure without comprehensive surveys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bless完成签到,获得积分10
1秒前
熊雅发布了新的文献求助10
1秒前
2秒前
2秒前
赘婿应助帅气善斓采纳,获得10
2秒前
rationality完成签到,获得积分10
3秒前
3秒前
zy发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助30
5秒前
5秒前
YY发布了新的文献求助10
7秒前
7秒前
LMH发布了新的文献求助10
7秒前
入变应助重要无招采纳,获得10
7秒前
超帅紫伊发布了新的文献求助10
10秒前
10秒前
11秒前
fyjlfy发布了新的文献求助10
11秒前
12秒前
wbh完成签到,获得积分10
13秒前
共享精神应助LMH采纳,获得10
14秒前
15秒前
在水一方应助NJUSTJAY采纳,获得10
16秒前
Hello应助BWZ采纳,获得10
16秒前
16秒前
16秒前
英俊的铭应助无聊的新波采纳,获得10
16秒前
赘婿应助lee采纳,获得10
17秒前
17秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
22秒前
22秒前
Emma完成签到 ,获得积分10
22秒前
SSY完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799141
求助须知:如何正确求助?哪些是违规求助? 5797409
关于积分的说明 15499325
捐赠科研通 4925654
什么是DOI,文献DOI怎么找? 2651531
邀请新用户注册赠送积分活动 1598616
关于科研通互助平台的介绍 1553538