生成树
光谱(功能分析)
数学
拉普拉斯算子
树(集合论)
衍生工具(金融)
组合数学
数学分析
物理
业务
量子力学
财务
作者
Zemiao Dai,Jia‐Bao Liu,Kang Wang
出处
期刊:AIMS mathematics
[American Institute of Mathematical Sciences]
日期:2024-01-01
卷期号:9 (6): 14594-14617
摘要
<abstract><p>In this paper, we focus on the strong product of the pentagonal networks. Let $ R_{n} $ be a hexagonal network composed of $ 2n $ pentagons and $ n $ quadrilaterals. Let $ P_{n}^{2} $ denote the graph formed by the strong product of $ R_{n} $ and its copy $ R_{n}^{\prime} $. By utilizing the decomposition theorem of the normalized Laplacian characteristics polynomial, we characterize the explicit formula of the multiplicative degree-Kirchhoff index completely. Moreover, the complexity of $ P_{n}^{2} $ is determined.</p></abstract>
科研通智能强力驱动
Strongly Powered by AbleSci AI