Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: A preliminary analysis

肝细胞癌 医学 无线电技术 随机森林 主成分分析 规格# 试验装置 人工智能 放射科 核医学 计算机科学 内科学 程序设计语言
作者
Simone Famularo,Camilla Penzo,Cesare Maino,Flavio Milana,Riccardo Oliva,Jacques Marescaux,Michèle Diana,Fabrizio Romano,Felice Giuliante,Francesco Ardito,Gian Luca Grazi,Matteo Donadon,Guido Torzilli
出处
期刊:Ejso [Elsevier BV]
卷期号:51 (1): 108274-108274 被引量:1
标识
DOI:10.1016/j.ejso.2024.108274
摘要

Abstract

Introduction

Microvascular invasion (MVI) is the main risk factor for overall mortality and recurrence after surgery for hepatocellular carcinoma (HCC).The aim was to train machine-learning models to predict MVI on preoperative CT scan.

Methods

3-phases CT scans were retrospectively collected among 4 Italian centres. DICOM files were manually segmented to detect the liver and the tumor(s). Radiomics features were extracted from the tumoral, peritumoral and healthy liver areas in each phase. Principal component analysis (PCA) was performed to reduce the dimensions of the dataset. Data were divided between training (70%) and test (30%) sets. Random-Forest (RF), fully connected MLP Artificial neural network (neuralnet) and extreme gradient boosting (XGB) models were fitted to predict MVI. Prediction accuracy was estimated in the test set.

Results

Between 2008 and 2022, 218 preoperative CT scans were collected. At the histological specimen, 72(33.02%) patients had MVI. First and second order radiomics features were extracted, obtaining 672 variables. PCA selected 58 dimensions explaining >95% of the variance.In the test set, the XGB model obtained Accuracy = 68.7% (Sens: 38.1%, Spec: 83.7%, PPV: 53.3% and NPV: 73.4%). The neuralnet showed an Accuracy = 50% (Sens: 52.3%, Spec: 48.8%, PPV: 33.3%, NPV: 67.7%). RF was the best performer (Acc = 96.8%, 95%CI: 0.91–0.99, Sens: 95.2%, Spec: 97.6%, PPV: 95.2% and NPV: 97.6%).

Conclusion

Our model allowed a high prediction accuracy of the presence of MVI at the time of HCC diagnosis. This could lead to change the treatment allocation, the surgical extension and the follow-up strategy for those patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的涵柏完成签到,获得积分10
刚刚
田様应助未了采纳,获得10
刚刚
Alicante发布了新的文献求助10
1秒前
ayan完成签到,获得积分10
1秒前
超锅发布了新的文献求助10
1秒前
bc应助Ryan采纳,获得20
1秒前
chen发布了新的文献求助10
1秒前
宝福X暴富发布了新的文献求助10
1秒前
西瓜腾完成签到 ,获得积分10
2秒前
豆沙包完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
4秒前
lxlcx应助12366666采纳,获得20
4秒前
嗯啊完成签到,获得积分10
5秒前
5秒前
LL发布了新的文献求助10
5秒前
耐心齐完成签到,获得积分10
5秒前
viviween完成签到,获得积分10
5秒前
完美世界应助Alicante采纳,获得10
6秒前
凉雨渲完成签到,获得积分10
6秒前
7秒前
7秒前
pp63应助张祖伦采纳,获得30
7秒前
Hus11221完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
鼓励男孩发布了新的文献求助10
8秒前
Daisy发布了新的文献求助10
8秒前
缓慢思枫发布了新的文献求助10
9秒前
现代丹萱发布了新的文献求助10
9秒前
9秒前
大模型应助kate采纳,获得10
9秒前
111111111完成签到,获得积分20
10秒前
higgs完成签到,获得积分10
10秒前
李照慧发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816616
求助须知:如何正确求助?哪些是违规求助? 3359993
关于积分的说明 10406263
捐赠科研通 3078092
什么是DOI,文献DOI怎么找? 1690505
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767871