亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: A preliminary analysis

肝细胞癌 医学 无线电技术 随机森林 主成分分析 规格# 试验装置 人工智能 放射科 核医学 计算机科学 内科学 程序设计语言
作者
Simone Famularo,Camilla Penzo,Cesare Maino,Flavio Milana,Riccardo Oliva,Jacques Marescaux,Michèle Diana,Fabrizio Romano,Felice Giuliante,Francesco Ardito,Gian Luca Grazi,Matteo Donadon,Guido Torzilli
出处
期刊:Ejso [Elsevier BV]
卷期号:51 (1): 108274-108274 被引量:5
标识
DOI:10.1016/j.ejso.2024.108274
摘要

Abstract

Introduction

Microvascular invasion (MVI) is the main risk factor for overall mortality and recurrence after surgery for hepatocellular carcinoma (HCC).The aim was to train machine-learning models to predict MVI on preoperative CT scan.

Methods

3-phases CT scans were retrospectively collected among 4 Italian centres. DICOM files were manually segmented to detect the liver and the tumor(s). Radiomics features were extracted from the tumoral, peritumoral and healthy liver areas in each phase. Principal component analysis (PCA) was performed to reduce the dimensions of the dataset. Data were divided between training (70%) and test (30%) sets. Random-Forest (RF), fully connected MLP Artificial neural network (neuralnet) and extreme gradient boosting (XGB) models were fitted to predict MVI. Prediction accuracy was estimated in the test set.

Results

Between 2008 and 2022, 218 preoperative CT scans were collected. At the histological specimen, 72(33.02%) patients had MVI. First and second order radiomics features were extracted, obtaining 672 variables. PCA selected 58 dimensions explaining >95% of the variance.In the test set, the XGB model obtained Accuracy = 68.7% (Sens: 38.1%, Spec: 83.7%, PPV: 53.3% and NPV: 73.4%). The neuralnet showed an Accuracy = 50% (Sens: 52.3%, Spec: 48.8%, PPV: 33.3%, NPV: 67.7%). RF was the best performer (Acc = 96.8%, 95%CI: 0.91–0.99, Sens: 95.2%, Spec: 97.6%, PPV: 95.2% and NPV: 97.6%).

Conclusion

Our model allowed a high prediction accuracy of the presence of MVI at the time of HCC diagnosis. This could lead to change the treatment allocation, the surgical extension and the follow-up strategy for those patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风筝鱼完成签到 ,获得积分10
1秒前
5秒前
8秒前
淡定白枫发布了新的文献求助10
13秒前
zommen完成签到 ,获得积分10
23秒前
run发布了新的文献求助10
23秒前
研友_VZG7GZ应助淡定白枫采纳,获得10
26秒前
35秒前
淡定白枫完成签到,获得积分10
35秒前
孙孙应助瘦瘦的寒珊采纳,获得10
45秒前
Panther完成签到,获得积分10
55秒前
量子星尘发布了新的文献求助10
59秒前
孙孙应助瘦瘦的寒珊采纳,获得10
1分钟前
Ellen应助背后梦安采纳,获得30
1分钟前
002完成签到,获得积分10
1分钟前
1分钟前
孙孙应助瘦瘦的寒珊采纳,获得10
1分钟前
Asher发布了新的文献求助10
1分钟前
背后梦安完成签到,获得积分10
1分钟前
霖霖完成签到,获得积分10
1分钟前
morena发布了新的文献求助10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得30
1分钟前
wanci应助Asher采纳,获得10
1分钟前
1分钟前
苏小北完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助30
2分钟前
整齐的萝完成签到,获得积分20
2分钟前
南滨完成签到 ,获得积分10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
2分钟前
Ava应助2311采纳,获得30
2分钟前
情怀应助lf采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
lf发布了新的文献求助10
3分钟前
佳丽发布了新的文献求助10
3分钟前
佳丽完成签到,获得积分10
3分钟前
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976643
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204613
捐赠科研通 3257484
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613