亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: A preliminary analysis

肝细胞癌 医学 无线电技术 随机森林 主成分分析 规格# 试验装置 人工智能 放射科 核医学 计算机科学 内科学 程序设计语言
作者
Simone Famularo,Camilla Penzo,Cesare Maino,Flavio Milana,Riccardo Oliva,Jacques Marescaux,Michèle Diana,Fabrizio Romano,Felice Giuliante,Francesco Ardito,Gian Luca Grazi,Matteo Donadon,Guido Torzilli
出处
期刊:Ejso [Elsevier]
卷期号:51 (1): 108274-108274 被引量:6
标识
DOI:10.1016/j.ejso.2024.108274
摘要

Abstract

Introduction

Microvascular invasion (MVI) is the main risk factor for overall mortality and recurrence after surgery for hepatocellular carcinoma (HCC).The aim was to train machine-learning models to predict MVI on preoperative CT scan.

Methods

3-phases CT scans were retrospectively collected among 4 Italian centres. DICOM files were manually segmented to detect the liver and the tumor(s). Radiomics features were extracted from the tumoral, peritumoral and healthy liver areas in each phase. Principal component analysis (PCA) was performed to reduce the dimensions of the dataset. Data were divided between training (70%) and test (30%) sets. Random-Forest (RF), fully connected MLP Artificial neural network (neuralnet) and extreme gradient boosting (XGB) models were fitted to predict MVI. Prediction accuracy was estimated in the test set.

Results

Between 2008 and 2022, 218 preoperative CT scans were collected. At the histological specimen, 72(33.02%) patients had MVI. First and second order radiomics features were extracted, obtaining 672 variables. PCA selected 58 dimensions explaining >95% of the variance.In the test set, the XGB model obtained Accuracy = 68.7% (Sens: 38.1%, Spec: 83.7%, PPV: 53.3% and NPV: 73.4%). The neuralnet showed an Accuracy = 50% (Sens: 52.3%, Spec: 48.8%, PPV: 33.3%, NPV: 67.7%). RF was the best performer (Acc = 96.8%, 95%CI: 0.91–0.99, Sens: 95.2%, Spec: 97.6%, PPV: 95.2% and NPV: 97.6%).

Conclusion

Our model allowed a high prediction accuracy of the presence of MVI at the time of HCC diagnosis. This could lead to change the treatment allocation, the surgical extension and the follow-up strategy for those patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fairy完成签到,获得积分10
28秒前
小二郎应助高大的羿采纳,获得10
48秒前
57秒前
WXKennyS发布了新的文献求助10
1分钟前
王饱饱完成签到 ,获得积分10
1分钟前
ljl86400完成签到,获得积分10
1分钟前
2分钟前
pursu发布了新的文献求助30
2分钟前
不安的未来完成签到,获得积分10
2分钟前
pursu完成签到,获得积分10
2分钟前
blenx完成签到,获得积分10
2分钟前
yf完成签到 ,获得积分10
3分钟前
李健应助科研通管家采纳,获得10
3分钟前
4分钟前
慕青发布了新的文献求助10
4分钟前
SCI完成签到,获得积分10
4分钟前
4分钟前
WXKennyS发布了新的文献求助10
4分钟前
默默完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
陈彦希发布了新的文献求助10
5分钟前
Nikki发布了新的文献求助10
5分钟前
6分钟前
Nikki完成签到,获得积分10
6分钟前
6分钟前
sissie发布了新的文献求助10
6分钟前
李健应助sissie采纳,获得10
6分钟前
李小强完成签到,获得积分10
6分钟前
7分钟前
7分钟前
7分钟前
MaKJ发布了新的文献求助10
8分钟前
8分钟前
8分钟前
Mingyue123发布了新的文献求助10
8分钟前
yb完成签到,获得积分10
8分钟前
weibo完成签到,获得积分10
8分钟前
PALMS发布了新的文献求助10
8分钟前
PALMS完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357085
求助须知:如何正确求助?哪些是违规求助? 4488652
关于积分的说明 13972405
捐赠科研通 4389765
什么是DOI,文献DOI怎么找? 2411715
邀请新用户注册赠送积分活动 1404271
关于科研通互助平台的介绍 1378414