Federated learning with knowledge distillation for multi-organ segmentation with partially labeled datasets

计算机科学 分割 推论 嵌入 人工智能 遗忘 机器学习 数据挖掘 模式识别(心理学) 语言学 哲学
作者
Soopil Kim,Hee Jung Park,Myeongkyun Kang,Kyong Hwan Jin,Ehsan Adeli,Kilian M. Pohl,Sang Hyun Park
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:95: 103156-103156 被引量:12
标识
DOI:10.1016/j.media.2024.103156
摘要

The state-of-the-art multi-organ CT segmentation relies on deep learning models, which only generalize when trained on large samples of carefully curated data. However, it is challenging to train a single model that can segment all organs and types of tumors since most large datasets are partially labeled or are acquired across multiple institutes that may differ in their acquisitions. A possible solution is Federated learning, which is often used to train models on multi-institutional datasets where the data is not shared across sites. However, predictions of federated learning can be unreliable after the model is locally updated at sites due to 'catastrophic forgetting'. Here, we address this issue by using knowledge distillation (KD) so that the local training is regularized with the knowledge of a global model and pre-trained organ-specific segmentation models. We implement the models in a multi-head U-Net architecture that learns a shared embedding space for different organ segmentation, thereby obtaining multi-organ predictions without repeated processes. We evaluate the proposed method using 8 publicly available abdominal CT datasets of 7 different organs. Of those datasets, 889 CTs were used for training, 233 for internal testing, and 30 volumes for external testing. Experimental results verified that our proposed method substantially outperforms other state-of-the-art methods in terms of accuracy, inference time, and the number of parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xu1227发布了新的文献求助10
刚刚
在水一方应助诸忆雪采纳,获得10
刚刚
壮观的灰狼完成签到 ,获得积分10
刚刚
科研通AI6应助uzumay采纳,获得30
刚刚
整齐的涵蕾完成签到,获得积分10
刚刚
科研小蚂蚁完成签到,获得积分20
1秒前
笑笑完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
浮游应助善良茗茗采纳,获得10
2秒前
3秒前
专注的冰绿完成签到,获得积分20
4秒前
CHiaretto完成签到,获得积分10
4秒前
笨小孩发布了新的文献求助10
5秒前
小舞的大树完成签到,获得积分10
6秒前
6秒前
慕青应助爱科研的咩咩采纳,获得10
8秒前
浮游应助Sunny采纳,获得10
8秒前
8秒前
8秒前
8秒前
shinnosuke应助liang2508采纳,获得10
9秒前
xxxxhey完成签到,获得积分10
10秒前
11秒前
13秒前
诸忆雪发布了新的文献求助10
13秒前
拼搏凝蕊完成签到,获得积分20
13秒前
14秒前
栀暖棠深完成签到,获得积分10
14秒前
酷酷电脑发布了新的文献求助10
14秒前
一对二完成签到,获得积分10
15秒前
含蓄含烟发布了新的文献求助10
16秒前
冉冉升起应助justin采纳,获得30
17秒前
17秒前
不吃香菜完成签到,获得积分10
18秒前
林林林林发布了新的文献求助10
18秒前
18秒前
风中冰香应助niuya采纳,获得20
18秒前
充电宝应助Yc丶小橘采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350613
求助须知:如何正确求助?哪些是违规求助? 4483988
关于积分的说明 13957602
捐赠科研通 4383396
什么是DOI,文献DOI怎么找? 2408306
邀请新用户注册赠送积分活动 1400952
关于科研通互助平台的介绍 1374365