Cloud–edge collaboration task scheduling in cloud manufacturing: An attention-based deep reinforcement learning approach

云制造 计算机科学 云计算 强化学习 作业车间调度 分布式计算 调度(生产过程) 人工智能 工程类 地铁列车时刻表 运营管理 操作系统
作者
Zhen Chen,Zhang Li,Xiaohan Wang,Kunyu Wang
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:177: 109053-109053 被引量:57
标识
DOI:10.1016/j.cie.2023.109053
摘要

Cloud Manufacturing (CMfg), as a service-oriented manufacturing mode, aims to provide consumers on-demand manufacturing services. The CMfg platform requires task scheduling technology to schedule manufacturing tasks efficiently, and improve resource utilization and customer satisfaction. Existing scheduling models for manufacturing tasks mainly consider maximizing the quality of service for customers but ignore the actual production execution, which will lead to low-quality execution or delayed delivery. To maximize customer satisfaction and balance production, this article studies a cloud–edge collaboration manufacturing task scheduling in CMfg (CETS). CETS refines manufacturing services deployed in the cloud to the factory process level, and schedules tasks according to the real-time production information on the edge side and manufacturing service information on the cloud side. Considering the dynamics of CETS and the complexity of state information in CETS, an attention-based deep reinforcement learning (DRL) algorithm is proposed to solve CETS. First, the CETS is mathematically represented and built as a partially observable Markov decision process. Second, on-policy maximum a posteriori policy optimization (V-MPO) with gated transformer-XL (GTrXL) named AV-MPO is developed. The effectiveness, training stability, generalizability, scalability, and robustness of AV-MPO are investigated. Rule-based algorithms and some state of art DRL algorithms, such as proximal policy optimization (PPO), soft actor-critic (SAC), and dueling deep q network (Dueling DQN), are compared with AV-MPO. The experimental results validate that AV-MPO can deal with the CETS problem more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zho发布了新的文献求助10
1秒前
皮皮发布了新的文献求助10
1秒前
cencen发布了新的文献求助10
2秒前
英姑应助枔火采纳,获得10
2秒前
榕榕酱发布了新的文献求助10
2秒前
bkagyin应助烤冷面采纳,获得30
2秒前
桐桐应助谨慎的雨琴采纳,获得10
3秒前
SciGPT应助孙敬涵采纳,获得10
3秒前
自觉的问蕊完成签到,获得积分10
3秒前
dvd发布了新的文献求助10
3秒前
zhaoyang完成签到 ,获得积分10
3秒前
李白发布了新的文献求助10
3秒前
4秒前
旅行者完成签到,获得积分10
4秒前
临江仙发布了新的文献求助10
4秒前
xxfsx应助liduo采纳,获得10
5秒前
波波完成签到,获得积分10
5秒前
洪越发布了新的文献求助10
6秒前
6秒前
小鱼发布了新的文献求助10
6秒前
6秒前
skf完成签到,获得积分10
6秒前
Orange应助聪慧含海采纳,获得10
7秒前
繁荣的皮皮虾完成签到,获得积分20
7秒前
8秒前
莘莘完成签到,获得积分10
8秒前
CR完成签到 ,获得积分10
8秒前
张玲梅发布了新的文献求助10
8秒前
共享精神应助LLL采纳,获得10
9秒前
9秒前
u7iui发布了新的文献求助10
10秒前
进击的DOPA发布了新的文献求助10
10秒前
10秒前
张张发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
yangtuotuotuopoi完成签到,获得积分10
13秒前
徐新军完成签到,获得积分10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639