A deep reinforcement learning approach to assess the low-altitude airspace capacity for urban air mobility

计算机科学 起飞 强化学习 运动规划 航空 实时计算 模拟 运输工程 人工智能 汽车工程 航空航天工程 工程类 机器人
作者
Asal Mehditabrizi,Mahdi Samadzad,Sina Sabzekar
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2301.09758
摘要

Urban air mobility is the new mode of transportation aiming to provide a fast and secure way of travel by utilizing the low-altitude airspace. This goal cannot be achieved without the implementation of new flight regulations which can assure safe and efficient allocation of flight paths to a large number of vertical takeoff/landing aerial vehicles. Such rules should also allow estimating the effective capacity of the low-altitude airspace for planning purposes. Path planning is a vital subject in urban air mobility which could enable a large number of UAVs to fly simultaneously in the airspace without facing the risk of collision. Since urban air mobility is a novel concept, authorities are still working on the redaction of new flight rules applicable to urban air mobility. In this study, an autonomous UAV path planning framework is proposed using a deep reinforcement learning approach and a deep deterministic policy gradient algorithm. The objective is to employ a self-trained UAV to reach its destination in the shortest possible time in any arbitrary environment by adjusting its acceleration. It should avoid collisions with any dynamic or static obstacles and avoid entering prior permission zones existing on its path. The reward function is the determinant factor in the training process. Thus, two different reward function compositions are compared and the chosen composition is deployed to train the UAV by coding the RL algorithm in python. Finally, numerical simulations investigated the success rate of UAVs in different scenarios providing an estimate of the effective airspace capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林林完成签到 ,获得积分10
1秒前
1秒前
2秒前
锦城纯契完成签到 ,获得积分10
2秒前
有缘人完成签到,获得积分10
3秒前
3秒前
kong完成签到 ,获得积分10
3秒前
5秒前
酷波er应助是咸鱼呀采纳,获得10
5秒前
气急败坏的卡尔王完成签到 ,获得积分10
6秒前
6秒前
Orange应助lll采纳,获得10
6秒前
香蕉觅云应助聪明曼岚采纳,获得10
7秒前
小高发布了新的文献求助10
7秒前
江子川完成签到,获得积分10
8秒前
陈思完成签到,获得积分10
8秒前
9秒前
ShaoShao关注了科研通微信公众号
9秒前
able完成签到,获得积分10
10秒前
爆米花应助淘宝叮咚采纳,获得10
10秒前
10秒前
Owen应助淘宝叮咚采纳,获得10
10秒前
潇潇雨歇应助淘宝叮咚采纳,获得10
10秒前
CodeCraft应助淘宝叮咚采纳,获得10
10秒前
mmyhn发布了新的文献求助10
10秒前
秋天完成签到,获得积分10
11秒前
执着完成签到,获得积分10
12秒前
爆米花应助hsgfiw采纳,获得10
12秒前
14秒前
14秒前
15秒前
传奇3应助纪梵希采纳,获得10
15秒前
奥斯卡完成签到,获得积分0
17秒前
18秒前
打打应助是咸鱼呀采纳,获得10
18秒前
18秒前
lll发布了新的文献求助10
19秒前
云海老完成签到,获得积分10
19秒前
FashionBoy应助小高采纳,获得10
19秒前
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Overcoming Synthetic Challenges in Medicinal Chemistry Mechanistic Insights and Solutions 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4076491
求助须知:如何正确求助?哪些是违规求助? 3615441
关于积分的说明 11475668
捐赠科研通 3333249
什么是DOI,文献DOI怎么找? 1832086
邀请新用户注册赠送积分活动 901863
科研通“疑难数据库(出版商)”最低求助积分说明 820570