Prediction of heat generation effect on force torque and mechanical properties at varying tool rotational speed in friction stir welding using Artificial Neural Network

转速 材料科学 搅拌摩擦焊 焊接 极限抗拉强度 扭矩 发热 复合材料 微观结构 扫描电子显微镜 摩擦焊接 粒度 冶金 机械工程 工程类 物理 热力学
作者
Sanjeev Kumar,Manoj Kumar Triveni,Jitendra Kumar Katiyar,Tameshwer Nath Tiwari,Barnik Saha Roy
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:: 095440622311557-095440622311557
标识
DOI:10.1177/09544062231155737
摘要

Friction stir welding (FSW) has played a significant role in joining aerospace alloys. During this process, the tool rotational (TRS) speed has been found to significantly affect heat generation compared to other parameters. Therefore, the study has investigated the effect of heat generation on force-torque and mechanical properties at different tool rotational speeds (TRS) in the FSW process through experimentation followed by Artificial Neural Network (ANN) technique. Further, the influence of different TRS ranging between 600 and 1800 rpm with an increment of 400 rpm on considered responses; namely thermal weld cycle, microstructure, and grain distribution in nugget zone (NZ) for 2050-T84 Al-Cu-Li alloy plates, welded using FSW were also investigated. It is observed that the vertically downward force (Z-force), longitudinal force (X-force), and spindle torque (Sp. T) decrease with increasing TRS. It is also observed an increasing (up to 1400 rpm) and then decreasing trend for tensile strength and hardness of welded samples. Moreover, the generation of frictional heat and grain size in NZ is increased with increasing TRS from 600 to 1800 rpm. However, the scanning electron microscope (SEM) micrographs of all-welded samples revealed a ductile mode of tensile fracture. Furthermore, the obtained experimental results were validated using the ANN technique. A quite better agreement has been established among the predicted outcomes from ANN with experimental results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喻萃发布了新的文献求助10
刚刚
LaTeXer应助zzz采纳,获得10
刚刚
caigou完成签到,获得积分10
刚刚
1秒前
1秒前
dcx发布了新的文献求助10
2秒前
十月发布了新的文献求助10
2秒前
2秒前
2秒前
研友_Z63kg8完成签到,获得积分10
2秒前
SCI预备役发布了新的文献求助10
3秒前
bubble嘞发布了新的文献求助10
4秒前
juzi完成签到 ,获得积分10
4秒前
大模型应助明ming到此一游采纳,获得10
5秒前
猪仔5号完成签到 ,获得积分10
5秒前
wzhang完成签到,获得积分10
6秒前
6秒前
ng9jR2完成签到,获得积分10
6秒前
7秒前
黎笙应助勤奋的千山采纳,获得10
7秒前
wxyshare完成签到,获得积分10
7秒前
所所应助快乐或守卫采纳,获得10
7秒前
浮游应助南风采纳,获得40
7秒前
英吉利25发布了新的文献求助10
8秒前
十月完成签到,获得积分10
8秒前
ppxiaop发布了新的文献求助200
9秒前
9秒前
顾矜应助SARAH采纳,获得10
9秒前
酷酷的晓旋完成签到,获得积分10
9秒前
荆长帅关注了科研通微信公众号
9秒前
852应助tom采纳,获得10
9秒前
共享精神应助包子采纳,获得30
9秒前
鳗鱼酸奶完成签到,获得积分10
10秒前
LaTeXer应助Jiannnn采纳,获得10
10秒前
huhu完成签到 ,获得积分10
10秒前
GGBOND完成签到,获得积分10
10秒前
yizhi猫发布了新的文献求助30
11秒前
Sir.夏季风完成签到,获得积分10
11秒前
喻萃完成签到,获得积分10
11秒前
sunny完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5024514
求助须知:如何正确求助?哪些是违规求助? 4261551
关于积分的说明 13281991
捐赠科研通 4068541
什么是DOI,文献DOI怎么找? 2225379
邀请新用户注册赠送积分活动 1234104
关于科研通互助平台的介绍 1158082