Abnormal Traffic Detection Based on Attention and Big Step Convolution

计算机科学 过度拟合 人工智能 卷积神经网络 模式识别(心理学) 灰度 数据集 数据挖掘 特征提取 人工神经网络 图像(数学)
作者
Daoquan Li,Xueqing Dong,Jie Gao,Keyong Hu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 64957-64967 被引量:4
标识
DOI:10.1109/access.2023.3289200
摘要

Abnormal traffic detection is critical to network security and quality of service. However, the similarity of features and the single dimension of the detection model cause great difficulties for abnormal traffic detection, and thus a big-step convolutional neural network traffic detection model based on the attention mechanism is proposed. Firstly, the network traffic characteristics are analyzed and the raw traffic is preprocessed and mapped into a two-dimensional grayscale image. Then, multi-channel grayscale images are generated by histogram equalization, and an attention mechanism is introduced to assign different weights to traffic features to enhance local features. Finally, pooling-free convolutional neural networks are combined to extract traffic features of different depths, thus improving the defects such as local feature omission and overfitting in convolutional neural networks. The simulation experiment was carried out in a balanced public data set and an actual data set. Using the commonly used algorithm SVM as a baseline, the proposed model is compared with ANN, CNN, RF, Bayes and two latest models. Experimentally, the accuracy rate with multiple classifications is 99.5%. The proposed model has the best anomaly detection. And the proposed method outperforms other models in precision, recall, and F1. It is demonstrated that the model is not only efficient in detection, but also robust and robust to different complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助眼睛大莆采纳,获得10
刚刚
1秒前
bsf123完成签到,获得积分10
2秒前
wanci应助huhuhuuh采纳,获得10
3秒前
完美世界应助zhanzhi采纳,获得10
4秒前
6秒前
6秒前
77发布了新的文献求助10
6秒前
CLMY完成签到,获得积分10
10秒前
康康星完成签到,获得积分10
11秒前
11秒前
孤独靖柏发布了新的文献求助10
12秒前
谦让的含海完成签到,获得积分10
12秒前
77完成签到,获得积分20
15秒前
zhanzhi发布了新的文献求助10
16秒前
23秒前
27秒前
30秒前
852应助chenpaul1983采纳,获得10
31秒前
34秒前
huhuhuuh发布了新的文献求助10
34秒前
35秒前
35秒前
yar应助高高高采纳,获得10
36秒前
橙果果发布了新的文献求助20
37秒前
DQY发布了新的文献求助10
39秒前
阳光青文发布了新的文献求助10
40秒前
酷波er应助兴奋大马喽采纳,获得10
42秒前
材1完成签到 ,获得积分10
43秒前
Wy21完成签到 ,获得积分10
44秒前
46秒前
47秒前
王德发3号完成签到,获得积分20
48秒前
慕青应助无情的宛儿采纳,获得10
50秒前
yu5546发布了新的文献求助10
52秒前
三笠完成签到,获得积分10
52秒前
tao_blue发布了新的文献求助30
52秒前
王德发3号关注了科研通微信公众号
53秒前
55秒前
yu5546完成签到,获得积分10
57秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Ultra-Wide Bandgap Semiconductor Materials 600
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4089999
求助须知:如何正确求助?哪些是违规求助? 3628676
关于积分的说明 11504789
捐赠科研通 3340979
什么是DOI,文献DOI怎么找? 1836546
邀请新用户注册赠送积分活动 904494
科研通“疑难数据库(出版商)”最低求助积分说明 822350