Geometrical positioning surveying-based features for BEOL line-end-pull-back modeling using regression-based machine-learning

生产线后端 像素 计算机科学 人工智能 光学接近校正 直线(几何图形) 全球定位系统 特征(语言学) 算法 过程(计算) 模拟 计算机视觉 模式识别(心理学) 数学 几何学 互连 哲学 操作系统 语言学 电信 计算机网络
作者
Ahmed Hamed Fatehy,Hazem Hegazy,Omar El-Sewefy,Mohamed Dessouky,Ashraf Salem
出处
期刊:Journal of micro/nanopatterning, materials, and metrology [SPIE - International Society for Optical Engineering]
卷期号:22 (02)
标识
DOI:10.1117/1.jmm.22.2.023401
摘要

BackgroundLine-end-pull-back (LEPB) is a well-known systematic defect in BEOL metal layers, where a line-end (LE) tip is pulled back from its desired location due to lithography (litho) process effects. Severe LEPB directly affects BEOL connectivity and may lead to partial or total metal-via disconnection.AimLEPB can be characterized through model-based litho simulations but at the cost of high computational resource consumption. This study aims to provide a fast and accurate approximation of computationally expensive litho simulations through regression-based machine learning (ML) modeling.ApproachLEPB modeling is approached through the LightGBM model. Input features were approached using density pixels, density concentric circle area sampling (CCAS), and geometrical positioning surveying (GPS), which is an edge-based engine that provides a direct one-to-one mapping between model features and geometrical measurements between the LE as a point-of-interest and its surrounding contextual patterns. The importance of LightGBM features by splits was employed to reduce features across the used approaches.ResultsThe reduced features of GPS produced almost the same modeling quality (training: RMS = 0.571 nm, δEWD = 0.297 nm, and R2 % = 98.74 % , and testing: RMS = 0.643 nm, δEWD = 0.344 nm, and R2 % = 98.40 % ) with −22.22 % fewer number of features and less feature extraction runtime compared to the full features set of density pixels and density CCAS approaches.ConclusionsCompared to model-based litho simulations, the obtained calibrated ML models can be used to provide fast, yet accurate predictions of the amounts of pull-back or extensions introduced at LEs near vias, eliminating a major contributor to systematic IC yield loss.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SAY发布了新的文献求助10
刚刚
慕青应助加百莉采纳,获得10
5秒前
不能说的秘密完成签到,获得积分10
5秒前
6秒前
6秒前
9秒前
10秒前
11秒前
一颗葡萄完成签到 ,获得积分10
12秒前
炙热的芙完成签到,获得积分10
13秒前
linlin发布了新的文献求助10
15秒前
16秒前
李重坤完成签到,获得积分10
18秒前
19秒前
不安的小刺猬完成签到,获得积分10
21秒前
斿斿完成签到 ,获得积分10
22秒前
打打应助逆风采纳,获得10
24秒前
24秒前
SciGPT应助金屋藏娇采纳,获得10
27秒前
28秒前
29秒前
英姑应助Liangang采纳,获得10
30秒前
linlin完成签到,获得积分10
31秒前
33秒前
37秒前
爆米花应助科研通管家采纳,获得10
43秒前
43秒前
小马甲应助科研通管家采纳,获得10
43秒前
43秒前
43秒前
华仔应助科研通管家采纳,获得10
43秒前
小新应助科研通管家采纳,获得10
43秒前
深情安青应助科研通管家采纳,获得10
43秒前
NexusExplorer应助科研通管家采纳,获得10
43秒前
Lucas应助科研通管家采纳,获得10
43秒前
unqiue应助科研通管家采纳,获得10
43秒前
FashionBoy应助科研通管家采纳,获得10
43秒前
香蕉觅云应助科研通管家采纳,获得10
43秒前
ding应助科研通管家采纳,获得10
44秒前
我是老大应助科研通管家采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566