独立同分布随机变量
均质化(气候)
格子(音乐)
数学
高斯分布
统计物理学
收敛速度
数学分析
随机变量
物理
量子力学
统计
计算机科学
生态学
频道(广播)
生物多样性
生物
计算机网络
声学
摘要
Abstract We consider a simple two‐dimensional harmonic lattice with random, independent, and identically distributed masses. Using the methods of stochastic homogenization, we prove that solutions with initial data, which varies slowly relative to the lattice spacing, converge in an appropriate sense to solutions of an effective wave equation. The convergence is strong and almost sure. In addition, the role of the lattice's dimension in the rate of convergence is discussed. The technique combines energy estimates with powerful classical results about sub‐Gaussian random variables.
科研通智能强力驱动
Strongly Powered by AbleSci AI