Do linguistic features of research article titles affect received online attention? A corpus-based analysis

复杂度 排名(信息检索) 独创性 背景(考古学) 情感(语言学) 计算机科学 引用 语言学 心理学 人工智能 自然语言处理 社会学 社会科学 图书馆学 定性研究 历史 哲学 考古
作者
Haoran Zhu,Xueying Liu
出处
期刊:Library Hi Tech [Emerald Publishing Limited]
卷期号:42 (6): 2000-2016 被引量:6
标识
DOI:10.1108/lht-01-2023-0022
摘要

Purpose Scientific impact is traditionally assessed with citation-based metrics. Recently, altmetric indices have been introduced to measure scientific impact both within academia and among the general public. However, little research has investigated the association between the linguistic features of research article titles and received online attention. To address this issue, the authors examined in the present study the relationship between a series of title features and altmetric attention scores. Design/methodology/approach The data included 8,658 titles of Science articles. The authors extracted six features from the title corpus (i.e. mean word length, lexical sophistication, lexical density, title length, syntactic dependency length and sentiment score). The authors performed Spearman’s rank analyses to analyze the correlations between these features and online impact. The authors then conducted a stepwise backward multiple regression to identify predictors for the articles' online impact. Findings The correlation analyses revealed weak but significant correlations between all six title features and the altmetric attention scores. The regression analysis showed that four linguistic features of titles (mean word length, lexical sophistication, title length and sentiment score) have modest predictive effects on the online impact of research articles. Originality/value In the internet era with the widespread use of social media and online platforms, it is becoming increasingly important for researchers to adapt to the changing context of research evaluation. This study identifies several linguistic features that deserve scholars’ attention in the writing of article titles. It also has practical implications for academic administrators and pedagogical implications for instructors of academic writing courses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liangchaoyang完成签到 ,获得积分10
2秒前
轻松的鑫发布了新的文献求助10
2秒前
4秒前
5秒前
科研通AI5应助cici采纳,获得10
7秒前
7秒前
YUYU发布了新的文献求助10
8秒前
10秒前
热心尔芙完成签到,获得积分10
12秒前
12秒前
呆萌的u发布了新的文献求助200
13秒前
深情安青应助qii采纳,获得10
14秒前
de铭完成签到,获得积分10
15秒前
15秒前
InfiniteLulu发布了新的文献求助10
18秒前
无语的子骞完成签到,获得积分10
18秒前
黎明之前发布了新的文献求助10
18秒前
Ava应助下水道采纳,获得10
19秒前
大模型应助划落落采纳,获得10
19秒前
张灵娜发布了新的文献求助10
19秒前
杨询完成签到,获得积分10
22秒前
王源源完成签到,获得积分10
23秒前
SSnice完成签到,获得积分20
24秒前
26秒前
felix驳回了Orange应助
26秒前
29秒前
Monica关注了科研通微信公众号
29秒前
SciGPT应助野性的枕头采纳,获得10
30秒前
32秒前
鹿lu发布了新的文献求助10
33秒前
kaede完成签到,获得积分10
33秒前
33秒前
张灵娜完成签到,获得积分10
34秒前
Ray发布了新的文献求助10
36秒前
砍柴少年发布了新的文献求助30
37秒前
田様应助鹿lu采纳,获得10
38秒前
猪猪侠发布了新的文献求助10
39秒前
39秒前
gg发布了新的文献求助10
40秒前
California完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4811256
求助须知:如何正确求助?哪些是违规求助? 4124442
关于积分的说明 12761857
捐赠科研通 3860866
什么是DOI,文献DOI怎么找? 2125289
邀请新用户注册赠送积分活动 1146896
关于科研通互助平台的介绍 1040390