Transfer learning with data alignment and optimal transport for EEG based motor imagery classification

计算机科学 学习迁移 分类器(UML) 人工智能 脑电图 模式识别(心理学) 脑-机接口 运动表象 校准 领域(数学分析) 特征提取 机器学习 数据挖掘 数学 统计 数学分析 精神科 心理学
作者
Chao‐Hsien Chu,Lei Zhu,Aiai Huang,Ping Xu,Nanjiao Ying,Jianhai Zhang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016015-016015 被引量:3
标识
DOI:10.1088/1741-2552/ad1f7a
摘要

Abstract Objective . The non-stationarity of electroencephalogram (EEG) signals and the variability among different subjects present significant challenges in current Brain–Computer Interfaces (BCI) research, which requires a time-consuming specific calibration procedure to address. Transfer Learning (TL) offers a potential solution by leveraging data or models from one or more source domains to facilitate learning in the target domain, so as to address these challenges. Approach . In this paper, a novel Multi-source domain Transfer Learning Fusion (MTLF) framework is proposed to address the calibration problem. Firstly, the method transforms the source domain data with the resting state segment data, in order to decrease the differences between the source domain and the target domain. Subsequently, feature extraction is performed using common spatial pattern. Finally, an improved TL classifier is employed to classify the target samples. Notably, this method does not require the label information of target domain samples, while concurrently reducing the calibration workload. Main results . The proposed MTLF is assessed on Datasets 2a and 2b from the BCI Competition IV. Compared with other algorithms, our method performed relatively the best and achieved mean classification accuracy of 73.69% and 70.83% on Datasets 2a and 2b respectively. Significance. Experimental results demonstrate that the MTLF framework effectively reduces the discrepancy between the source and target domains and acquires better classification performance on two motor imagery datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LY应助微笑面对采纳,获得10
1秒前
猪猪hero发布了新的文献求助10
2秒前
打打应助略略略采纳,获得10
3秒前
赵萌发布了新的文献求助10
4秒前
5秒前
成666完成签到,获得积分10
5秒前
大男完成签到,获得积分10
6秒前
LA关注了科研通微信公众号
7秒前
卢小白完成签到,获得积分10
8秒前
9秒前
默默发布了新的文献求助10
9秒前
11秒前
鳗鱼白风完成签到,获得积分20
12秒前
无奈天亦完成签到,获得积分10
12秒前
dawang发布了新的文献求助10
12秒前
北海未暖完成签到,获得积分10
14秒前
14秒前
魔幻完成签到,获得积分10
14秒前
整齐乐荷完成签到,获得积分10
15秒前
李博士发布了新的文献求助10
16秒前
16秒前
潇湘完成签到 ,获得积分10
16秒前
qqqyy完成签到,获得积分10
17秒前
17秒前
17秒前
zl发布了新的文献求助10
18秒前
Tzzl0226发布了新的文献求助10
19秒前
20秒前
超级雨安完成签到,获得积分20
20秒前
if完成签到 ,获得积分10
20秒前
21秒前
Orange应助要减肥的含卉采纳,获得30
21秒前
21秒前
刘倩发布了新的文献求助10
22秒前
鳗鱼白风发布了新的文献求助10
22秒前
干净的烧鹅完成签到,获得积分10
23秒前
打打应助萨克麦迪采纳,获得10
23秒前
隐形曼青应助默默采纳,获得10
24秒前
思源应助222采纳,获得20
24秒前
dawang完成签到,获得积分20
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353589
关于积分的说明 10366149
捐赠科研通 3069892
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766304