地质学
地震学
构造学
椭圆
断层(地质)
推力
大地测量学
几何学
物理
数学
热力学
作者
Liqing Jiao,Paul Tapponnier,Aurélie Coudurier‐Curveur,Xiwei Xu
标识
DOI:10.1073/pnas.2313278121
摘要
Trans-Himalayan geodetic data show that, between both syntaxes, India/Asia convergence is steadily oriented ≈ N20°E. However, surface faulting near both syntaxes, along the 2005 and 1950 earthquake ruptures, imply long-term thrusting directed ≈ 130° apart, and post-LGM (last Glacial Maximum) shortening rates of ≈ 5 to 6 mm/y, ≈ 2 to 3 times slower than in Nepal (≈ 15 to 20 mm/y). Syntaxial earthquakes' return-time are also ≈ 3 times longer (>2,000 y) than in Nepal (≈ 700 y). In a structural frame centered halfway between the syntaxial cusps, the tectonic features of the range show remarkable symmetry. In map view, the overall shapes of the Main Front Thrust (MFT) and the Main Central Thrust (MCT) closely fit ellipses, with major-to-minor axis ratios of ≈ 2.5 to 3. This suggests that the range growth atop subducting India is "pinned" by the strike-slip faults that bound it to the east and west. Discrete Element Modeling corroborates a late-Tertiary elliptical range growth. This accounts for the ≈ 65° angles and twofold to threefold decrease in active thrusting between Nepal and the syntaxes, for the maximum Himalayan heights (≥8,000 m), larger magnitudes (≥8), and shorter return-time (≈ 700 y) of great earthquakes in Nepal, for the existence of two 500- to 600 km-long, south-concave mountain ranges north of both syntaxes and for the ≈ 9 mm/y, N100 to 110°E extension
科研通智能强力驱动
Strongly Powered by AbleSci AI