已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GSNN: A Neuromorphic Computing Model for the Flexible Path Planning in Various Constraint Environments

神经形态工程学 计算机科学 约束(计算机辅助设计) 运动规划 路径(计算) 分布式计算 模拟 控制工程 计算机体系结构 人工智能 工程类 机器人 人工神经网络 操作系统 机械工程
作者
Haojie Ruan,Yinghui Chang,Weikang Wu,Zenan Huang,Yabin Deng,Leilei Li,Hongyan Luo,Shan He,Donghui Guo
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-19 被引量:1
标识
DOI:10.1109/tase.2024.3359641
摘要

Spiking Neural Networks (SNNs) represent a new generation of artificial neural networks that draw inspiration from biological systems. However, due to the intricate dynamics they exhibit and the discontinuity inherent in spike signals, SNNs often encounter performance limitations when addressing optimization problems. In this paper, we introduce the Graph-connected Spiking Neural Network model (GSNN), an extension of the SNN framework. The GSNN model holds the potential for integration with various existing path planning methods, rendering it applicable to a wide array of common path planning tasks. We specifically present two fundamental models within the GSNN framework. The first model employs GSNN to extract heuristic information from constrained pixel maps. This extracted data is then amalgamated with a novel sampling method, resulting in enhanced planning efficiency when compared to conventional techniques. The second model leverages GSNN to map a weighted graph, effectively utilizing plasticity methods to ascertain the shortest path within the graph. Moreover, this model facilitates path planning under diverse constraint environments, encompassing dynamic considerations, cost-awareness, and the collision dimensions of moving objects. Recognizing that the size of pixel maps or the number of nodes within weighted graphs might constrain GSNN’s capabilities, we propose a partitioning strategy to address this limitation. Empirical results unequivocally demonstrate the superiority of both GSNN models in resolving static path planning problems. Furthermore, the second GSNN model demonstrates rational performance across various constrained scenarios. Note to Practitioners —The primary motivation behind this study is to explore the utilization of neural morphic computation methods in addressing path planning challenges. To accomplish this, we introduce an encompassing model named GSNN. Given the limited coverage of neural morphic computation within this field, we present a comprehensive overview of its potential applications, with the intention of providing a valuable reference for both researchers and practitioners. Moreover, GSNN has the capability to seamlessly integrate with existing advanced optimization methods, thereby leading to enhanced performance and the capacity to tackle even more intricate problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
5秒前
鱼儿游完成签到 ,获得积分10
7秒前
顾矜应助Rjy采纳,获得10
10秒前
10秒前
彭于晏应助约三十采纳,获得10
10秒前
生生不息发布了新的文献求助10
11秒前
小刷子完成签到 ,获得积分10
11秒前
真实的白翠完成签到 ,获得积分10
12秒前
12秒前
lizhiqian2024发布了新的文献求助10
12秒前
14秒前
科研通AI5应助paganina采纳,获得10
14秒前
乐观的灭绝应助钵钵鸡采纳,获得10
16秒前
Cuikx发布了新的文献求助10
16秒前
LucienS发布了新的文献求助10
17秒前
CipherSage应助nicole采纳,获得10
17秒前
粗犷的鹏飞完成签到 ,获得积分10
19秒前
星启完成签到 ,获得积分10
21秒前
forory完成签到,获得积分10
23秒前
恋阙谙发布了新的文献求助10
23秒前
云淡风轻发布了新的文献求助10
23秒前
27秒前
echo完成签到 ,获得积分10
28秒前
29秒前
科研通AI5应助科研小白采纳,获得10
31秒前
玩命的鹤完成签到 ,获得积分10
33秒前
继续萌萌发布了新的文献求助10
34秒前
木木完成签到 ,获得积分10
35秒前
慌慌完成签到 ,获得积分10
37秒前
40秒前
41秒前
CipherSage应助迷你的水绿采纳,获得30
41秒前
李健应助妮妮采纳,获得10
42秒前
老鐵完成签到,获得积分10
43秒前
种喜欢的花完成签到 ,获得积分10
45秒前
caicai发布了新的文献求助10
45秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782517
求助须知:如何正确求助?哪些是违规求助? 3327943
关于积分的说明 10233908
捐赠科研通 3042913
什么是DOI,文献DOI怎么找? 1670358
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758915