LFEMAP-Net: Low-level Feature Enhancement and Multi-scale Attention Pyramid Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images

计算机科学 棱锥(几何) 特征提取 卷积神经网络 人工智能 分割 模式识别(心理学) 特征(语言学) 图像分割 深度学习 边界(拓扑) 代表(政治) 数据挖掘 计算机视觉 数学分析 语言学 哲学 数学 政治 法学 政治学 物理 光学
作者
Yu Liu,Erzhu Li,Wei Liu,Xing Li,Yuxuan Zhu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jstars.2023.3346454
摘要

As the rapid development of earth observation technology and deep learning, building extraction from remotely sensed imagery based on deep convolutional neural networks (DCNNs) has attracted wide attention in recent years. However, due to the heterogeneity of building shapes and sizes and the complexity of the surrounding objects, current building extraction methods still have challenges in boundary accuracy and complete building extraction. For these purposes, we proposed low-level feature enhancement and multi-scale attention pyramid aggregation network (LFEMAP-Net) that considers building boundary information and multi-scale feature expression to obtain higher accuracy building extraction. Firstly, low-level feature enhancement model is proposed based on prior edge information to enhance the representation of spatial details, effectively addressing issues related to information loss and fuzzy boundaries. Additionally, a multi-scale attention pyramid aggregation model is developed during the decoding stage to facilitate the fusion of features from different scales, thereby enhancing the extraction of building features. Experimental results on two publicly available datasets validate that LFEMAP-Net can overcome building extraction interruptions and boundary blur in complex scenes, and achieve boundary optimization and complete segmentation of buildings and achieve better performance than other advanced semantic segmentation models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
酸萝卜发布了新的文献求助10
1秒前
iNk应助王_123123123123w采纳,获得20
4秒前
5秒前
浩浩发布了新的文献求助10
6秒前
kuoping完成签到,获得积分10
7秒前
8秒前
赵文若发布了新的文献求助10
8秒前
南宫萍发布了新的文献求助10
11秒前
清爽老九应助卢敏明采纳,获得10
13秒前
18秒前
18秒前
19秒前
jackhlj完成签到,获得积分10
19秒前
Conquer_Fate发布了新的文献求助10
20秒前
MaYue完成签到,获得积分10
22秒前
24秒前
ffffwj2024完成签到 ,获得积分10
25秒前
25秒前
清爽老九应助卢敏明采纳,获得10
26秒前
孙俪发布了新的文献求助10
26秒前
yizili完成签到,获得积分20
30秒前
科研通AI5应助南宫萍采纳,获得10
31秒前
31秒前
33秒前
33秒前
我剑也未尝不利应助小刘采纳,获得20
34秒前
雅雅发布了新的文献求助10
36秒前
兮pqsn发布了新的文献求助10
37秒前
Jason完成签到 ,获得积分10
38秒前
景碧空完成签到,获得积分10
38秒前
38秒前
渠安完成签到 ,获得积分10
38秒前
少年完成签到,获得积分10
40秒前
40秒前
小马甲应助Pt-SACs采纳,获得10
41秒前
俞璐发布了新的文献求助10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669