A CT-based Deep Learning Model for Predicting Subsequent Fracture Risk in Patients with Hip Fracture

医学 接收机工作特性 髋部骨折 断裂(地质) 射线照相术 回顾性队列研究 外科 核医学 内科学 骨质疏松症 岩土工程 工程类
作者
Yisak Kim,Young-Gon Kim,Jung-Wee Park,Byung Woo Kim,Youmin Shin,Sung Hye Kong,Jung Hee Kim,Young‐Kyun Lee,Sang Wan Kim,Chan Soo Shin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (1) 被引量:8
标识
DOI:10.1148/radiol.230614
摘要

Background Patients have the highest risk of subsequent fractures in the first few years after an initial fracture, yet models to predict short-term subsequent risk have not been developed. Purpose To develop and validate a deep learning prediction model for subsequent fracture risk using digitally reconstructed radiographs from hip CT in patients with recent hip fractures. Materials and Methods This retrospective study included adult patients who underwent three-dimensional hip CT due to a fracture from January 2004 to December 2020. Two-dimensional frontal, lateral, and axial digitally reconstructed radiographs were generated and assembled to construct an ensemble model. DenseNet modules were used to calculate risk probability based on extracted image features and fracture-free probability plots were output. Model performance was assessed using the C index and area under the receiver operating characteristic curve (AUC) and compared with other models using the paired t test. Results The training and validation set included 1012 patients (mean age, 74.5 years ± 13.3 [SD]; 706 female, 113 subsequent fracture) and the test set included 468 patients (mean age, 75.9 years ± 14.0; 335 female, 22 subsequent fractures). In the test set, the ensemble model had a higher C index (0.73) for predicting subsequent fractures than that of other image-based models (C index range, 0.59–0.70 for five of six models; P value range, < .001 to < .05). The ensemble model achieved AUCs of 0.74, 0.74, and 0.73 at the 2-, 3-, and 5-year follow-ups, respectively; higher than that of most other image-based models at 2 years (AUC range, 0.57–0.71 for five of six models; P value range, < .001 to < .05) and 3 years (AUC range, 0.55–0.72 for four of six models; P value range, < .001 to < .05). Moreover, the AUCs achieved by the ensemble model were higher than that of a clinical model that included known risk factors (2-, 3-, and 5-year AUCs of 0.58, 0.64, and 0.70, respectively; P < .001 for all). Conclusion In patients with recent hip fractures, the ensemble deep learning model using digital reconstructed radiographs from hip CT showed good performance for predicting subsequent fractures in the short term. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Li and Jaremko in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡完成签到 ,获得积分20
1秒前
zzzsh发布了新的文献求助10
2秒前
玛卡巴卡发布了新的文献求助10
4秒前
叫我小鲁就好完成签到,获得积分10
4秒前
11发布了新的文献求助10
4秒前
等待发布了新的文献求助10
5秒前
wing00024完成签到,获得积分10
5秒前
自信若之发布了新的文献求助20
6秒前
6秒前
今后应助蓝晴天采纳,获得10
7秒前
zzzzzzz发布了新的文献求助10
7秒前
善学以致用应助WYQ采纳,获得10
8秒前
量子星尘发布了新的文献求助10
10秒前
iuv完成签到,获得积分10
11秒前
sinker关注了科研通微信公众号
12秒前
JamesPei应助霞霞12310采纳,获得10
13秒前
11完成签到,获得积分10
14秒前
香蕉觅云应助啊娴子采纳,获得10
15秒前
15秒前
万能图书馆应助alan采纳,获得10
20秒前
蔡颂华发布了新的文献求助10
20秒前
Ghiocel完成签到,获得积分10
21秒前
22秒前
22秒前
川楚苗黎发布了新的文献求助10
22秒前
24秒前
CodeCraft应助霉运走开采纳,获得10
24秒前
sinker发布了新的文献求助20
25秒前
沈玉琳发布了新的文献求助10
26秒前
du关注了科研通微信公众号
26秒前
霞霞12310发布了新的文献求助10
27秒前
爆米花应助student采纳,获得30
28秒前
liuxu完成签到,获得积分10
30秒前
31秒前
传奇3应助叫我小鲁就好采纳,获得10
32秒前
量子星尘发布了新的文献求助10
33秒前
35秒前
WJ_Breakdown发布了新的文献求助10
36秒前
彭凯完成签到,获得积分10
36秒前
37秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881187
求助须知:如何正确求助?哪些是违规求助? 3423592
关于积分的说明 10734973
捐赠科研通 3148548
什么是DOI,文献DOI怎么找? 1737165
邀请新用户注册赠送积分活动 838713
科研通“疑难数据库(出版商)”最低求助积分说明 784050