Multi-objective optimization of residential building energy consumption, daylighting, and thermal comfort based on BO-XGBoost-NSGA-II

采光 建筑工程 热舒适性 能源消耗 建筑围护结构 多目标优化 拉丁超立方体抽样 遗传算法 阿什拉1.90 计算机科学 数学优化 工程类 热的 数学 电气工程 地理 气象学 统计 蒙特卡罗方法
作者
Chengjin Wu,Haize Pan,Zhenhua Luo,Chuan Liu,Hulongyi Huang
出处
期刊:Building and Environment [Elsevier BV]
卷期号:254: 111386-111386 被引量:84
标识
DOI:10.1016/j.buildenv.2024.111386
摘要

The energy consumption, daylighting, and thermal comfort of buildings directly affect the three key goals of residents. However, there is little research on the optimization of energy consumption, daylighting, and thermal comfort in residential buildings in China. Therefore, this study proposes an optimization framework that combines Bayesian optimization with extreme gradient boosting trees (BO-XGBoost) and non-dominated genetic algorithm-II (NSGA-II) to study the multi-objective optimization of residential building performance. This paper first uses Grasshopper to simulate and obtain a dataset through Latin hypercube sampling (LHS). BO-XGBoost is used to establish the regression relationship between building envelope design parameters and residential building performance. Then, the obtained regression model is used as the fitness function of NSGA-II to get the Pareto optimal solution set. Finally, the ideal point method is used to obtain the optimal combination of building envelope structure parameters for residential buildings. Taking a residential building in a hot summer and cold winter area as an example, the effectiveness of this method is verified. The results show that (1) BO-XGBoost has excellent predictive performance, with R2 values of 0.997, 0.960, and 0.994 for energy consumption, thermal comfort, and daylighting, respectively. (2) The proposed BO-XGBoost-NSGA-II can effectively achieve multi-objective optimization. Compared with the initial scheme of the case building, energy consumption is reduced by 44.1%, thermal comfort index is reduced by 10.9%, and daylighting performance is improved by 1.7%. Therefore, the proposed method can effectively optimize the performance goals of residential buildings and provide practical ideas for similar problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
wtt发布了新的文献求助10
3秒前
3秒前
互助棍哥完成签到,获得积分10
3秒前
yeapyeye完成签到,获得积分10
4秒前
乐观小之应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
乐观小之应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
Qiao应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
6秒前
乐观小之应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
22222发布了新的文献求助10
6秒前
彭于晏应助科研通管家采纳,获得30
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
乐观小之应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
李锋发布了新的文献求助30
8秒前
9秒前
雁回发布了新的文献求助10
9秒前
大大怪发布了新的文献求助10
9秒前
小文子发布了新的文献求助10
12秒前
12秒前
13秒前
章英健完成签到,获得积分10
13秒前
14秒前
Ava应助廉剑身采纳,获得10
14秒前
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4217878
求助须知:如何正确求助?哪些是违规求助? 3751868
关于积分的说明 11797607
捐赠科研通 3416616
什么是DOI,文献DOI怎么找? 1875079
邀请新用户注册赠送积分活动 928907
科研通“疑难数据库(出版商)”最低求助积分说明 837857