Multi-objective optimization of residential building energy consumption, daylighting, and thermal comfort based on BO-XGBoost-NSGA-II

采光 建筑工程 热舒适性 能源消耗 建筑围护结构 多目标优化 拉丁超立方体抽样 遗传算法 阿什拉1.90 计算机科学 数学优化 工程类 热的 数学 电气工程 地理 气象学 统计 蒙特卡罗方法
作者
Chengjin Wu,Haize Pan,Zhenhua Luo,Chuan Liu,Hulongyi Huang
出处
期刊:Building and Environment [Elsevier]
卷期号:254: 111386-111386 被引量:120
标识
DOI:10.1016/j.buildenv.2024.111386
摘要

The energy consumption, daylighting, and thermal comfort of buildings directly affect the three key goals of residents. However, there is little research on the optimization of energy consumption, daylighting, and thermal comfort in residential buildings in China. Therefore, this study proposes an optimization framework that combines Bayesian optimization with extreme gradient boosting trees (BO-XGBoost) and non-dominated genetic algorithm-II (NSGA-II) to study the multi-objective optimization of residential building performance. This paper first uses Grasshopper to simulate and obtain a dataset through Latin hypercube sampling (LHS). BO-XGBoost is used to establish the regression relationship between building envelope design parameters and residential building performance. Then, the obtained regression model is used as the fitness function of NSGA-II to get the Pareto optimal solution set. Finally, the ideal point method is used to obtain the optimal combination of building envelope structure parameters for residential buildings. Taking a residential building in a hot summer and cold winter area as an example, the effectiveness of this method is verified. The results show that (1) BO-XGBoost has excellent predictive performance, with R2 values of 0.997, 0.960, and 0.994 for energy consumption, thermal comfort, and daylighting, respectively. (2) The proposed BO-XGBoost-NSGA-II can effectively achieve multi-objective optimization. Compared with the initial scheme of the case building, energy consumption is reduced by 44.1%, thermal comfort index is reduced by 10.9%, and daylighting performance is improved by 1.7%. Therefore, the proposed method can effectively optimize the performance goals of residential buildings and provide practical ideas for similar problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
进击的PhD应助chen采纳,获得10
刚刚
3秒前
4秒前
nb完成签到,获得积分10
5秒前
脑洞疼应助Evan采纳,获得10
5秒前
ZXW发布了新的文献求助10
7秒前
汉堡包应助fufu采纳,获得10
7秒前
7秒前
EMMA发布了新的文献求助30
7秒前
8秒前
深情安青应助无语的白易采纳,获得10
8秒前
ding应助幽幽采纳,获得10
9秒前
威武从霜发布了新的文献求助10
9秒前
英俊的铭应助冷酷的柜门采纳,获得10
10秒前
亦阳发布了新的文献求助50
10秒前
1526918042完成签到 ,获得积分10
12秒前
decademe完成签到,获得积分10
13秒前
13秒前
LLY发布了新的文献求助10
14秒前
14秒前
14秒前
朝a完成签到,获得积分10
14秒前
dmq完成签到 ,获得积分10
15秒前
YAYA完成签到,获得积分10
15秒前
唉呦嘿发布了新的文献求助10
15秒前
15秒前
15秒前
深情安青应助slby采纳,获得10
16秒前
17秒前
Evan发布了新的文献求助10
18秒前
18秒前
19秒前
迷路芝麻完成签到,获得积分10
21秒前
22秒前
幽幽发布了新的文献求助10
22秒前
Evander发布了新的文献求助10
23秒前
23秒前
周以筠发布了新的文献求助10
23秒前
吃橘子吗完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638365
求助须知:如何正确求助?哪些是违规求助? 4745581
关于积分的说明 15002409
捐赠科研通 4796512
什么是DOI,文献DOI怎么找? 2562691
邀请新用户注册赠送积分活动 1522009
关于科研通互助平台的介绍 1481864