LSRFormer: Efficient Transformer Supply Convolutional Neural Networks With Global Information for Aerial Image Segmentation

图像分割 卷积神经网络 计算机科学 人工智能 分割 航空影像 变压器 计算机视觉 模式识别(心理学) 遥感 图像(数学) 地质学 电压 工程类 电气工程
作者
Renhe Zhang,Qian Zhang,Guixu Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:25
标识
DOI:10.1109/tgrs.2024.3366709
摘要

Both local context and global context information are essential for the semantic segmentation of aerial images. Convolutional Neural Networks (CNNs) can capture local context information well but cannot model the global dependencies. Vision transformers (ViTs) are good at extracting global information but cannot retain the spatial details well. In order to leverage the advantages of these two paradigms, we integration them in one model in this study. However, global token interaction of ViT brings high computational cost, which makes it difficult to apply to large-sized aerial images. To handle this problem, we propose a novel efficient ViT block named long-short-range transformer (LSRFormer). Instead of mainstream ViTs designed as backbones, LSRFormer is a pre-training-free and plug-and-play module to be appended after CNN stages to supplement the global information. It is composed of long-range self-attention (LR-SA), short-range self-attention (SR-SA), and multi-scale-convolutional feed-forward-network (MSC-FFN). LR-SA establishes long-range dependencies at the junction of the windows and SR-SA diffuses the long-range information from window boundary to internal. MSC-FFN can capture multi-scale information inside the ViT block. We append LSRFormer block after each CNN stage of a pure convolutional network to build a model named ConvLSR-Net. Compared with existing models which combining CNN and ViTs, our model can learn both local and global representation at all stages of the model. In particular, ConvLSR-Net achieves state-of-the-art (SOTA) results on four challenging aerial image segmentation benchmarks, including iSAID, LoveDA, ISPRS Potsdam and Vaihingen. Code has been released at https://github.com/stdcoutzrh/ConvLSR-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
Moonber发布了新的文献求助10
2秒前
3秒前
壮观复天完成签到 ,获得积分10
3秒前
orixero应助科研通管家采纳,获得30
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得50
3秒前
猪猪hero应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
4秒前
猪猪hero应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得30
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
充电宝应助AJY采纳,获得10
7秒前
Moonber完成签到,获得积分10
7秒前
酷波er应助genius采纳,获得10
9秒前
sian发布了新的文献求助10
10秒前
11秒前
11秒前
吃花蝴蝶吗完成签到,获得积分10
11秒前
winfan完成签到 ,获得积分10
11秒前
11秒前
12秒前
汉堡包应助君兰采纳,获得10
13秒前
修狗大王完成签到 ,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421862
求助须知:如何正确求助?哪些是违规求助? 4536861
关于积分的说明 14155275
捐赠科研通 4453423
什么是DOI,文献DOI怎么找? 2442864
邀请新用户注册赠送积分活动 1434254
关于科研通互助平台的介绍 1411370