SPAGRI-AI: Smart precision agriculture dataset of aerial images at different heights for crop and weed detection using super-resolution

精准农业 航空影像 计算机科学 航空影像 杂草 遥感 航测 图像分辨率 分辨率(逻辑) 人工智能 探测器 领域(数学) 帧(网络) 农业 图像(数学) 地理 数学 农学 考古 纯数学 生物 电信
作者
Martin Jonák,Ján Mucha,Štěpán Ježek,Daniel Kováč,Kornél Czíria
出处
期刊:Agricultural Systems [Elsevier]
卷期号:216: 103876-103876 被引量:22
标识
DOI:10.1016/j.agsy.2024.103876
摘要

Recently, smart agriculture has become an essential part of modern agriculture approaches from tillage, via plant seeding and grow support to their collection. With modern technologies, farmers can use substances like pesticides, herbicides, or fertilizers at precise dosages or to identify places on a field with specific production rates. The main objective of this study is to introduce a novel and a unique aerial image dataset of various fields acquired by UAV containing crops/weeds in the early phenophases captured in two different resolutions (2 mm and 7 mm per pixel). Secondly, the best super-resolution technique for high-resolution images, substitution with lower resolution is explored. For data acquisition, we employed DJI Matrice 600 equipped with a full-frame Sony Alpha A7R IV285 image sensor. Data were captured at flight heights of 26 and 95 m from 4 different fields in Central Europe. In addition, we proposed a methodology focused on the selection of an appropriate super-resolution method to enhance low-resolution aerial images to obtain better accuracy of crop/weed detection. As a baseline crop/weed detector for super-resolution effect evaluation, YOLOv5 architecture was used. Next, we explored the performance of several super-resolution models (U-Net++, ESRGAN, SwinIR), and fine-tuned the best-performed one. We present the new dataset named SPAGRI-AI: a novel unique dataset of aerial images for super-resolution experiments in smart precision agriculture. The dataset contains 27,638 aerial images (1024 × 1024 px) and additionally, it contains a subset of 2014 labeled images with 45,548 bounding boxes of 12 classes. The main purpose of the SPAGRI-AI is to provide the scientific community with real-world data to test new methods for super-resolution (SR) and crop/weed detection. During the evaluation of selected super-resolution models, the YOLOv5 model trained on high-resolution images resulted in corn [email protected] of 94.48%. The YOLOv5 model trained on low-resolution images resulted in corn [email protected] of only 51.43%. Nevertheless, if the low-resolution images were pre-processed using the SwinIR super-resolution method, corn [email protected] of 62.36% was achieved. To the best of our knowledge, it is one of the largest datasets available to the paper's publication date. Overall, the SPAGRI-AI dataset and the findings from our experiments contribute to the advancement of super-resolution techniques and crop/weed detection methods in the field of smart agriculture. By utilizing real-world data and optimizing image enhancement approaches, we paved the way for further developments in precision farming practices and applying emerging technologies in agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
下雨天发布了新的文献求助10
3秒前
3秒前
xixi发布了新的文献求助10
4秒前
路远发布了新的文献求助30
4秒前
4秒前
多情紫霜发布了新的文献求助30
4秒前
haoooooooooooooo应助Vivian采纳,获得10
6秒前
天天快乐应助waresi采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
9秒前
汉堡包应助han采纳,获得10
9秒前
阿q发布了新的文献求助10
11秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
水木子尔发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
羊羊完成签到,获得积分10
16秒前
17秒前
杜智诺完成签到,获得积分10
18秒前
18秒前
supper完成签到,获得积分10
18秒前
羊羊发布了新的文献求助10
19秒前
han发布了新的文献求助10
19秒前
鲤鱼碧琴发布了新的文献求助10
20秒前
连爱琴发布了新的文献求助10
20秒前
仙贝完成签到,获得积分10
21秒前
bb发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
嘿嘿发布了新的文献求助10
22秒前
vigour完成签到,获得积分20
22秒前
22秒前
完美世界应助莫默采纳,获得10
23秒前
蒋呀蒋呀发布了新的文献求助10
23秒前
mjnrhw完成签到,获得积分10
24秒前
mjnrhw发布了新的文献求助10
27秒前
Singularity应助wxy采纳,获得10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5703276
求助须知:如何正确求助?哪些是违规求助? 5151163
关于积分的说明 15239321
捐赠科研通 4857774
什么是DOI,文献DOI怎么找? 2606645
邀请新用户注册赠送积分活动 1557808
关于科研通互助平台的介绍 1515644