Energy-Efficient ReS2-Based Optoelectronic Synapse for 3D Object Reconstruction and Recognition

神经形态工程学 人工智能 计算机视觉 计算机科学 材料科学 机器视觉 光电子学 人工神经网络
作者
Yabo Chen,Yujie Huang,Junwei Zeng,Yan Kang,Yinlong Tan,Xiangnan Xie,Bo Wei,Cheng Li,Liang Fang,Tian Jiang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (50): 58631-58642 被引量:13
标识
DOI:10.1021/acsami.3c14958
摘要

The neuromorphic vision system (NVS) equipped with optoelectronic synapses integrates perception, storage, and processing and is expected to address the issues of traditional machine vision. However, owing to their lack of stereo vision, existing NVSs focus on 2D image processing, which makes it difficult to solve problems such as spatial cognition errors and low-precision interpretation. Consequently, inspired by the human visual system, an NVS with stereo vision is developed to achieve 3D object recognition, depending on the prepared ReS2 optoelectronic synapse with 12.12 fJ ultralow power consumption. This device exhibits excellent optical synaptic plasticity derived from the persistent photoconductivity effect. As the cornerstone for 3D vision, color planar information is successfully discriminated and stored in situ at the sensor end, benefiting from its wavelength-dependent plasticity in the visible region. Importantly, the dependence of the channel conductance on the target distance is experimentally revealed, implying that the structure information on the object can be directly captured and stored by the synapse. The 3D image of the object is successfully reconstructed via fusion of its planar and depth images. Therefore, the proposed 3D-NVS based on ReS2 synapses for 3D objects achieves a recognition accuracy of 97.0%, which is much higher than that for 2D objects (32.6%), demonstrating its strong ability to prevent 2D-photo spoofing in applications such as face payment, entrance guard systems, and others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪凝冬完成签到,获得积分10
刚刚
坦率的刺猬完成签到,获得积分10
2秒前
SYLH应助小鱼采纳,获得10
2秒前
虚心碧完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
tyf完成签到,获得积分10
5秒前
斯文败类应助ludwig采纳,获得10
5秒前
7秒前
7秒前
神勇从波完成签到 ,获得积分10
8秒前
tyf发布了新的文献求助10
8秒前
高贵的青柏发布了新的文献求助 60
10秒前
yes完成签到,获得积分20
12秒前
12秒前
文华发布了新的文献求助10
12秒前
14秒前
不安太阳完成签到,获得积分10
15秒前
机灵安白完成签到,获得积分10
16秒前
liuliu完成签到 ,获得积分10
17秒前
英俊的铭应助勤恳的流沙采纳,获得10
17秒前
17秒前
ludwig发布了新的文献求助10
18秒前
哈哈哈完成签到 ,获得积分10
20秒前
奶油小饼干完成签到,获得积分10
24秒前
25秒前
如意含雁完成签到,获得积分10
25秒前
李健的小迷弟应助Arafat采纳,获得10
26秒前
27秒前
上官若男应助挺帅一男的采纳,获得10
28秒前
29秒前
李健应助挽棠采纳,获得10
30秒前
酷炫雁梅发布了新的文献求助10
31秒前
35秒前
35秒前
量子星尘发布了新的文献求助10
35秒前
小橙子给fancynancy的求助进行了留言
35秒前
鸡蛋灌饼发布了新的文献求助10
35秒前
谢可驳回了烟花应助
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4026908
求助须知:如何正确求助?哪些是违规求助? 3566421
关于积分的说明 11351887
捐赠科研通 3297530
什么是DOI,文献DOI怎么找? 1816053
邀请新用户注册赠送积分活动 890491
科研通“疑难数据库(出版商)”最低求助积分说明 813656