Machine-learning repurposing of DrugBank compounds for opioid use disorder

药物数据库 重新调整用途 机器学习 阿片类药物使用障碍 人工智能 背景(考古学) 药物重新定位 药物发现 药理学 计算机科学 医学 药品 类阿片 生物信息学 受体 生物 内科学 古生物学 生态学
作者
Hongsong Feng,Jian Jiang,Guo‐Wei Wei
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:160: 106921-106921 被引量:20
标识
DOI:10.1016/j.compbiomed.2023.106921
摘要

Opioid use disorder (OUD) is a chronic and relapsing condition that involves the continued and compulsive use of opioids despite harmful consequences. The development of medications with improved efficacy and safety profiles for OUD treatment is urgently needed. Drug repurposing is a promising option for drug discovery due to its reduced cost and expedited approval procedures. Computational approaches based on machine learning enable the rapid screening of DrugBank compounds, identifying those with the potential to be repurposed for OUD treatment. We collected inhibitor data for four major opioid receptors and used advanced machine learning predictors of binding affinity that fuse the gradient boosting decision tree algorithm with two natural language processing (NLP)-based molecular fingerprints and one traditional 2D fingerprint. Using these predictors, we systematically analyzed the binding affinities of DrugBank compounds on four opioid receptors. Based on our machine learning predictions, we were able to discriminate DrugBank compounds with various binding affinity thresholds and selectivities for different receptors. The prediction results were further analyzed for ADMET (absorption, distribution, metabolism, excretion, and toxicity), which provided guidance on repurposing DrugBank compounds for the inhibition of selected opioid receptors. The pharmacological effects of these compounds for OUD treatment need to be tested in further experimental studies and clinical trials. Our machine learning studies provide a valuable platform for drug discovery in the context of OUD treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形人发布了新的文献求助10
1秒前
Zoo应助大力天佑采纳,获得30
2秒前
活力的赛君完成签到,获得积分10
4秒前
完美时间线完成签到,获得积分10
5秒前
5秒前
隐形曼青应助白夜采纳,获得10
7秒前
PEKOEA发布了新的文献求助10
8秒前
8秒前
lxy应助完美时间线采纳,获得10
9秒前
迷人啤酒完成签到,获得积分10
9秒前
闪闪落雁完成签到,获得积分10
10秒前
yukeshou完成签到 ,获得积分10
10秒前
研友_ZragOn发布了新的文献求助10
11秒前
Jasper应助zozo采纳,获得10
11秒前
12秒前
14秒前
15秒前
xiaochou完成签到,获得积分10
15秒前
wss发布了新的文献求助10
15秒前
就是躺完成签到 ,获得积分10
18秒前
核桃发布了新的文献求助10
18秒前
斯文败类应助无限的谷丝采纳,获得10
19秒前
19秒前
19秒前
19秒前
深情安青应助一颗滚石采纳,获得20
21秒前
22秒前
22秒前
小陆完成签到,获得积分10
23秒前
23秒前
ylc发布了新的文献求助60
24秒前
TTTHANKS发布了新的文献求助30
24秒前
宗友绿发布了新的文献求助10
25秒前
小陆发布了新的文献求助10
25秒前
SciGPT应助wss采纳,获得10
26秒前
顾矜应助科研通管家采纳,获得10
27秒前
斯文败类应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084785
求助须知:如何正确求助?哪些是违规求助? 3623871
关于积分的说明 11495655
捐赠科研通 3338052
什么是DOI,文献DOI怎么找? 1835167
邀请新用户注册赠送积分活动 903724
科研通“疑难数据库(出版商)”最低求助积分说明 821922