厌氧氨氧化菌
造粒
胞外聚合物
制浆造纸工业
化学
环境科学
生化工程
反硝化
材料科学
工程类
生物
细菌
生物膜
氮气
反硝化细菌
复合材料
有机化学
遗传学
作者
Yifeng Xue,Haiyuan Ma,Yu-You Li
出处
期刊:Water Research
[Elsevier]
日期:2023-01-01
卷期号:228: 119353-119353
被引量:9
标识
DOI:10.1016/j.watres.2022.119353
摘要
Anaerobic ammonium oxidation (anammox) granular sludge is a promising biotechnological process for treating low-carbon nitrogenous wastewater, and is featured with low energy consumption and footprint. Previous theoretical and experimental research on anammox granular sludge processes mainly focused on granulation (flocs → granules), but pay little attention to the granulation cycle including granulation and regeneration. This work reviewed the previous studies from the perspective of anammox granules lifecycle and proposed various sustainable formation mechanisms of anammox granules. By reviewing the anaerobic, aerobic, and anammox granulation mechanisms, we summarize the mechanisms of thermodynamic theory, heterogeneous growth, extracellular polymeric substance (EPS)-based adhesion, quorum sensing (QS)-based regulation, biomineralization-based growth, and stratification of microorganisms to understand anammox granulation. In the regeneration process, the formation of precursors for re-granulation is explained by the mechanisms of physical crushing, quorum quenching and dispersion cue sensing. Based on the granulation cycle mechanism, the rebuilding of the normal regeneration process is considered essential to avoid granule floatation and the wash-out of granules. This comprehensive review indicates that future research on anammox granulation cycle should focus on the effects of filamentous bacteria in denitrification-anammox granulation cycle, the role of QS/ quorum quenching (QQ)-based autoinducers, development of diversified mechanisms to understand the cycle and the cycle mechanisms of stored granules.
科研通智能强力驱动
Strongly Powered by AbleSci AI