An intelligent driven deep residual learning framework for brain tumor classification using MRI images

计算机科学 深度学习 人工智能 机器学习 卷积神经网络 超参数 蚁群优化算法 进化算法 模式识别(心理学)
作者
Hossein Mehnatkesh,Seyed Mohammad Jafar Jalali,Abbas Khosravi,Saeid Nahavandi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 119087-119087 被引量:121
标识
DOI:10.1016/j.eswa.2022.119087
摘要

Brain tumor classification is an expensive complicated challenge in the sector of clinical image analysis. Machine learning algorithms enabled radiologists to accurately diagnose tumors without requiring major surgery. However, several challenges rise; first, the major challenge in designing the most accurate deep learning architecture for classifying brain tumors; and secondly, difficulty of finding an expert who is experienced in the field of classifying brain tumors using images by deep learning models. These difficulties made us motivated to propose an advanced and high accurate framework based on the concepts of deep learning and evolutionary algorithms to automatically design the ResNet architecture efficiently for classifying three types of brain tumors on a large database of MRI images. Thus, we propose an optimization-based deep convolutional ResNet model combined with a novel evolutionary algorithm to optimize the architecture and hyperparameters of deep ResNet model automatically without need of human experts as well manual architecture design which is complicated task to classify different types of brain tumor. Also, we propose an improved version of ant colony optimization (IACO) based on the concepts of differential evolution strategy and multi-population operators. These two concepts make an effective balance for solution diversity and convergence speed as well as enhancing the optimization performance and avoiding falling into the local optima for designing the deep learning-based ResNet architectures. The experimental finding revealed that our proposed framework obtained an average accuracy of 0.98694 which efficiently shows that our IACO-ResNet algorithm can help excellently with the automatic classification of brain tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助星辰采纳,获得10
1秒前
nilu发布了新的文献求助10
2秒前
fanqiaqia发布了新的文献求助10
2秒前
3秒前
3秒前
hu完成签到,获得积分10
4秒前
4秒前
6秒前
阿海的发布了新的文献求助10
6秒前
7秒前
7秒前
明芬发布了新的文献求助80
8秒前
橙子完成签到,获得积分10
8秒前
9秒前
WN发布了新的文献求助10
10秒前
陈嘻嘻嘻嘻完成签到,获得积分10
10秒前
10秒前
11秒前
阿海的完成签到,获得积分10
13秒前
梁宇轩发布了新的文献求助20
14秒前
14秒前
可爱的函函应助xiaohu采纳,获得10
14秒前
15秒前
15秒前
16秒前
16秒前
hyx完成签到,获得积分10
17秒前
王中秀完成签到,获得积分10
17秒前
jingcheng完成签到,获得积分10
18秒前
在水一方应助nilu采纳,获得10
18秒前
努力生活的小柴完成签到,获得积分10
20秒前
迷路元芹发布了新的文献求助10
20秒前
星辰发布了新的文献求助10
21秒前
21秒前
科研小王子完成签到,获得积分10
23秒前
23秒前
JarryChao发布了新的文献求助10
23秒前
brynhildr发布了新的文献求助10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310721
求助须知:如何正确求助?哪些是违规求助? 4454921
关于积分的说明 13861574
捐赠科研通 4343011
什么是DOI,文献DOI怎么找? 2384927
邀请新用户注册赠送积分活动 1379407
关于科研通互助平台的介绍 1347651