Resource-Efficient Distributed Deep Neural Networks Empowered by Intelligent Software-Defined Networking

计算机科学 分布式计算 云计算 服务质量 软件定义的网络 可扩展性 计算机网络 供应 网络体系结构 数据库 操作系统
作者
Ke Lü,Zhekai Du,Jingjing Li,Geyong Min
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 4069-4081 被引量:3
标识
DOI:10.1109/tnsm.2022.3218173
摘要

Contemporary machine learning methods have evolved from conventional algorithms to deep neural networks (DNNs) that are computation- and data- intensive. Thus, they are suitable to be deployed in the cloud that can offer high computational capacity and scalable resources. However, the cloud computing paradigm is not optimal for delay- and energy-sensitive applications. To mitigate these problems, a battery of distributed DNNs have been proposed to allow a fast inference with device-edge-cloud synergy. Furthermore, although distributed deployment of DNNs on real communication networks is an important research topic, the legacy network architecture cannot meet the requirements of these distributed deep neural networks due to the complicated management and manual configuration, etc. To cope with these requirements, we develop a novel and explicit Intelligent Software Defined Networking (ISDN) that aims to manage the bandwidth and computing resources across the network via the SDN paradigm. We first identify the difficulties of deploying distributed intelligent computing in the current network architecture. Then, we explain how to address these problems by introducing the ISDN architecture. Specifically, we develop a dynamic routing method to enable Quality-of-Service (QoS) communication based on the SDN paradigm and propose a Markov Decision Process (MDP) based dynamic task offloading model to achieve the optimal offloading policy of DNN tasks. We develop a simulation platform based on Mininet to measure its performance advantages over traditional architectures. Extensive experimental results show that compared with the traditional network architecture, our architecture based on the SDN paradigm can perform better in terms of both network throughput and resource utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大力洋葱完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
超级的天晴完成签到,获得积分10
3秒前
依然小鬼发布了新的文献求助10
3秒前
眼睛大花生完成签到,获得积分10
3秒前
自由月亮完成签到 ,获得积分10
3秒前
高高兴兴完成签到,获得积分10
4秒前
4秒前
pin完成签到,获得积分20
4秒前
Unfair完成签到,获得积分10
4秒前
领导范儿应助刘鹤采纳,获得10
4秒前
mili完成签到,获得积分20
5秒前
xzx完成签到 ,获得积分10
5秒前
5秒前
典雅的静发布了新的文献求助10
6秒前
艾玛发布了新的文献求助10
6秒前
朱鸿超发布了新的文献求助30
7秒前
7秒前
smartCH发布了新的文献求助10
8秒前
8秒前
Jasper应助悲凉的台灯采纳,获得10
8秒前
Lucas应助和谐的冰之采纳,获得10
9秒前
LHT发布了新的文献求助10
9秒前
zzz发布了新的文献求助10
10秒前
10秒前
依然小鬼完成签到,获得积分10
10秒前
科研通AI5应助佳佳佳采纳,获得10
10秒前
10秒前
10秒前
黄芩发布了新的文献求助10
11秒前
111完成签到,获得积分10
11秒前
12秒前
mysk完成签到,获得积分10
12秒前
12秒前
12秒前
共享精神应助chyu1057采纳,获得10
13秒前
奈奈iii发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786253
求助须知:如何正确求助?哪些是违规求助? 3332038
关于积分的说明 10252966
捐赠科研通 3047287
什么是DOI,文献DOI怎么找? 1672503
邀请新用户注册赠送积分活动 801315
科研通“疑难数据库(出版商)”最低求助积分说明 760141