控制理论(社会学)
量化(信号处理)
同步(交流)
人工神经网络
对数
数学
线性矩阵不等式
马尔可夫过程
计算机科学
李雅普诺夫函数
控制器(灌溉)
算法
数学优化
拓扑(电路)
控制(管理)
非线性系统
统计
人工智能
农学
生物
数学分析
物理
组合数学
量子力学
作者
Peng Shi,Xiao Li,Yingqi Zhang,Jingjing Yan
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers
[Institute of Electrical and Electronics Engineers]
日期:2022-12-23
卷期号:70 (3): 1381-1391
被引量:25
标识
DOI:10.1109/tcsi.2022.3230710
摘要
This paper addresses the event-triggered input-output finite-time mean square synchronization for uncertain Markovian jump neural networks with partly unknown transition rates and quantization. Considering the limited network resources, an event-triggered technique and a logarithmic quantizer are both provided. The error system model with uncertainty is established in the unified framework. Then, based on Lyapunov functional approach, interesting results are presented to guarantee the properties of the input-output finite-time mean square synchronization for the error systems. Furthermore, some solvability conditions are induced for the desired input-output finite-time mean square synchronization controller under linear matrix inequality techniques. Eventually, the theoretical finding's efficiency is shown by an example.
科研通智能强力驱动
Strongly Powered by AbleSci AI