Remaining Useful Life Prediction for Rolling Bearings With a Novel Entropy-Based Health Indicator and Improved Particle Filter Algorithm

颗粒过滤器 熵(时间箭头) 计算机科学 算法 滤波器(信号处理) 数据挖掘 人工智能 计算机视觉 物理 量子力学
作者
Tianyu Zhang,Qingfeng Wang,Yue Shu,Xiao Wang,Wensheng Ma
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 3062-3079 被引量:9
标识
DOI:10.1109/access.2023.3234286
摘要

Due to the importance of bearings in modern machinery, the prediction of the remaining useful life (RUL) of rolling bearings has been widely studied. When predicting the RUL of rolling bearings in engineering practice, the RUL is usually predicted based on historical data, and as the historical data increases, the prediction results should be more accurate. However, the existing methods usually have the shortcomings of low prediction accuracy, large cumulative error and failure to dynamically give prediction results with the increase of historical data, which are not suitable for engineering practice.To address the above problems, a novel RUL prediction method is proposed. The proposed method consists of 3 parts: First, the multi-scale entropy-based feature – namely "average multi-scale morphological gradient power spectral information entropy (AMMGPSIE)" – from the rolling bearings as the Health indicator (HI) is extracted to ensure all the fault-related information is well-included; Then, the HI is processed with the enhanced Hodrick Prescott trend-filtering with boundary lines (HPTF-BL) to ensure good performance and small fluctuation on the HI; Finally, the deterioration curve is predicted using an LSTM neural network and the improved Particle Filter algorithm that we proposed. The proposed method is validated using the experimental bearing degradation dataset and the casing data of a centrifugal pump bearing from an actual industrial site. Comparing the results with other recent RUL prediction methods, the proposed method achieved state-of-the-art feasibility and effectiveness, conform to the needs of practical application of the project.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
田様应助LiYong采纳,获得10
2秒前
zhangzhang完成签到,获得积分10
3秒前
3秒前
不安青牛应助Jiayou Zhang采纳,获得10
3秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Zx_1993应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
5秒前
卷卷应助科研通管家采纳,获得10
5秒前
hitomi应助科研通管家采纳,获得10
5秒前
噜啦噜啦嘞完成签到,获得积分20
5秒前
5秒前
Zx_1993应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
开心小只应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
Zx_1993应助科研通管家采纳,获得10
6秒前
卷卷应助科研通管家采纳,获得10
6秒前
卷卷应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
卷卷应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
开心超人完成签到 ,获得积分10
7秒前
葛稀发布了新的文献求助10
8秒前
wsazah完成签到,获得积分10
8秒前
大号发布了新的文献求助10
8秒前
香蕉觅云应助哈哈哈哈哈采纳,获得10
9秒前
大模型应助Lijunjie采纳,获得10
10秒前
顺顺发布了新的文献求助50
11秒前
852应助bobopoi采纳,获得10
11秒前
高分求助中
How Maoism Was Made: Reconstructing China, 1949-1965 1200
Quantum reference frames : from quantum information to spacetime 888
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4387890
求助须知:如何正确求助?哪些是违规求助? 3879646
关于积分的说明 12084250
捐赠科研通 3523212
什么是DOI,文献DOI怎么找? 1933533
邀请新用户注册赠送积分活动 974449
科研通“疑难数据库(出版商)”最低求助积分说明 872619