A novel convolution bi-directional gated recurrent unit neural network for emotion recognition in multichannel electroencephalogram signals

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 脑电图 卷积(计算机科学) 深度学习 情绪识别 熵(时间箭头) 人工神经网络 分类器(UML) 语音识别 心理学 量子力学 精神科 物理
作者
Abgeena Abgeena,Shruti Garg
出处
期刊:Technology and Health Care [IOS Press]
卷期号:31 (4): 1215-1234 被引量:6
标识
DOI:10.3233/thc-220458
摘要

BACKGROUND: Recognising emotions in humans is a great challenge in the present era and has several applications under affective computing. Deep learning (DL) is found as a successful tool for prediction of human emotions in different modalities. OBJECTIVE: To predict 3D emotions with high accuracy in multichannel physiological signals, i.e. electroencephalogram (EEG). METHODS: A hybrid DL model consisting of convolutional neural network (CNN) and gated recurrent units (GRU) is proposed in this work for emotion recognition in EEG data. CNN has the capability of learning abstract representation, whereas GRU can explore temporal correlation. A bi-directional variation of GRU is used here to learn features in both directions. Discrete and dimensional emotion indices are recognised in two publicly available datasets SEED and DREAMER, respectively. A fused feature of energy and Shannon entropy (𝐸𝑛𝑆𝐸→) and energy and differential entropy (𝐸𝑛𝐷𝐸→) are fed in the proposed classifier to improve the efficiency of the model. RESULTS: The performance of the presented model is measured in terms of average accuracy, which is obtained as 86.9% and 93.9% for SEED and DREAMER datasets, respectively. CONCLUSION: The proposed convolution bi-directional gated recurrent unit neural network (CNN-BiGRU) model outperforms most of the state-of-the-art and competitive hybrid DL models, which indicates the effectiveness of emotion recognition using EEG signals and provides a scientific base for the implementation in human-computer interaction (HCI).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tanzbd完成签到,获得积分10
1秒前
小王好饿完成签到 ,获得积分10
1秒前
小虫学长完成签到,获得积分10
1秒前
2秒前
小羊先生完成签到 ,获得积分10
2秒前
沈括完成签到,获得积分10
3秒前
3秒前
LM完成签到,获得积分10
3秒前
盏茶轻抿完成签到,获得积分10
3秒前
4秒前
王子陌完成签到,获得积分20
4秒前
样子完成签到,获得积分10
4秒前
荔枝凉完成签到,获得积分10
4秒前
hhh334发布了新的文献求助10
5秒前
靓仔完成签到,获得积分10
5秒前
小鱼完成签到,获得积分10
6秒前
nnnkkl完成签到,获得积分10
6秒前
孤独的雪一完成签到,获得积分10
6秒前
6秒前
Cc完成签到 ,获得积分10
6秒前
半圆亻完成签到,获得积分10
6秒前
shine发布了新的文献求助10
6秒前
柚子完成签到 ,获得积分10
6秒前
7秒前
土拨鼠发布了新的文献求助10
7秒前
咯咚完成签到 ,获得积分10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
HEIKU应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
HEIKU应助科研通管家采纳,获得10
7秒前
Nick应助科研通管家采纳,获得30
7秒前
gao_yiyi应助科研通管家采纳,获得30
7秒前
8秒前
哈哈发布了新的文献求助20
8秒前
英俊的铭应助τ涛采纳,获得10
8秒前
chrysan发布了新的文献求助10
8秒前
笔记本应助科研达人采纳,获得150
8秒前
9秒前
9秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788621
求助须知:如何正确求助?哪些是违规求助? 3333855
关于积分的说明 10265174
捐赠科研通 3049972
什么是DOI,文献DOI怎么找? 1673781
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549