已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Named entity recognition of Chinese electronic medical records based on a hybrid neural network and medical MC-BERT

计算机科学 人工智能 文字嵌入 特征(语言学) 自然语言处理 命名实体识别 人工神经网络 背景(考古学) 特征工程 特征向量 词(群论) 混合神经网络 词汇 深度学习 情报检索 任务(项目管理) 嵌入 经济 管理 古生物学 哲学 生物 语言学
作者
Peng Chen,Meng Zhang,Xiaosheng Yu,Songpu Li
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:22 (1) 被引量:4
标识
DOI:10.1186/s12911-022-02059-2
摘要

Abstract Background Named entity recognition (NER) of electronic medical records is an important task in clinical medical research. Although deep learning combined with pretraining models performs well in recognizing entities in clinical texts, because Chinese electronic medical records have a special text structure and vocabulary distribution, general pretraining models cannot effectively incorporate entities and medical domain knowledge into representation learning; separate deep network models lack the ability to fully extract rich features in complex texts, which negatively affects the named entity recognition of electronic medical records. Methods To better represent electronic medical record text, we extract the text’s local features and multilevel sequence interaction information to improve the effectiveness of electronic medical record named entity recognition. This paper proposes a hybrid neural network model based on medical MC-BERT, namely, the MC-BERT + BiLSTM + CNN + MHA + CRF model. First, MC-BERT is used as the word embedding model of the text to obtain the word vector, and then BiLSTM and CNN obtain the feature information of the forward and backward directions of the word vector and the local context to obtain the corresponding feature vector. After merging the two feature vectors, they are sent to multihead self-attention (MHA) to obtain multilevel semantic features, and finally, CRF is used to decode the features and predict the label sequence. Results The experiments show that the F1 values of our proposed hybrid neural network model based on MC-BERT reach 94.22%, 86.47%, and 92.28% on the CCKS-2017, CCKS-2019 and cEHRNER datasets, respectively. Compared with the general-domain BERT-based BiLSTM + CRF, our F1 values increased by 0.89%, 1.65% and 2.63%. Finally, we analyzed the effect of an unbalanced number of entities in the electronic medical records on the results of the NER experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
iman发布了新的文献求助10
3秒前
沉静一刀完成签到 ,获得积分10
3秒前
Timon完成签到,获得积分10
3秒前
sss完成签到 ,获得积分10
3秒前
糖伯虎完成签到 ,获得积分10
5秒前
jmg03发布了新的文献求助10
6秒前
谦让的小甜瓜完成签到,获得积分10
8秒前
多年以后完成签到,获得积分10
9秒前
buxiaode512完成签到,获得积分10
10秒前
ljh1771完成签到,获得积分10
11秒前
BA1完成签到 ,获得积分10
12秒前
13秒前
xy完成签到 ,获得积分10
14秒前
Charles完成签到,获得积分10
15秒前
三顿饭吃一天完成签到,获得积分10
15秒前
jiangchuansm完成签到,获得积分10
15秒前
妄自发布了新的文献求助10
19秒前
满眼星辰完成签到 ,获得积分10
20秒前
jmg03完成签到,获得积分10
20秒前
21秒前
红毛兔完成签到 ,获得积分10
22秒前
su完成签到 ,获得积分10
23秒前
格物致知完成签到,获得积分10
26秒前
overThat完成签到,获得积分10
30秒前
李健应助张丁采纳,获得10
32秒前
无语的安白应助lsw采纳,获得10
32秒前
33秒前
Veronica完成签到,获得积分10
35秒前
So完成签到 ,获得积分10
36秒前
晚街拾梦完成签到 ,获得积分10
37秒前
真的不会发布了新的文献求助10
40秒前
脑洞疼应助妄自采纳,获得10
40秒前
何不可应助精明涵双采纳,获得10
41秒前
42秒前
Focus_BG完成签到,获得积分10
42秒前
张丁发布了新的文献求助10
46秒前
真的不会完成签到,获得积分10
48秒前
诚心的信封完成签到 ,获得积分10
48秒前
bb关注了科研通微信公众号
52秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843103
求助须知:如何正确求助?哪些是违规求助? 3385380
关于积分的说明 10540235
捐赠科研通 3105937
什么是DOI,文献DOI怎么找? 1710791
邀请新用户注册赠送积分活动 823737
科研通“疑难数据库(出版商)”最低求助积分说明 774264