Transfer learning supported accurate assessment of multiclass cervix type images

子宫颈 人工智能 卷积神经网络 宫颈癌 医学 卡帕 计算机科学 深度学习 分类器(UML) 癌症 模式识别(心理学) 机器学习 内科学 数学 几何学
作者
Thendral Natarajan,D. Lakshmi
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine [SAGE Publishing]
卷期号:237 (2): 265-281 被引量:4
标识
DOI:10.1177/09544119221143441
摘要

Cervical cancer predominately affects women compared to lung, breast and endometrial cancer. Premature stage identification and proper treatment of this cancer may lead to 100% survival rate. The cervix type is very prominent in the detailed diagnosis of cervical cancer. High expertise and experienced gynecologist are required for an accurate diagnosis of cervical cancer. To reduce their burden, a model is proposed, based on deep learning that automatically classifies the cervix types. This paper presents Modified Deep Convolutional Neural Networks namely Modified VGG16 (MVGG16), Modified VGG19 (MVGG19), Modified ResNet50 (MRN50), Modified InceptionV3 (MIV3), and Modified InceptionResNetV2 (MIRNV2) for the classification of cervix type images. These modified networks are implemented using a Multiclass Support Vector Machine classifier. The performance metrics are tabulated and compared with pre-trained models. The simulation results show that MIRNV2 achieves the best performance compared to other models with an overall Accuracy of 92.91% and a Kappa score of 0.88. MIRNV2 model also gives better classification accuracy of 96.62% for type 1, 93.58% for type 2, and 95.61% for type 3 cervix images. Hence, this facilitates the application of MIRNV2 as a diagnostic tool to assist the gynecologist in the classification of cervix type images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
花痴的易真完成签到,获得积分10
5秒前
5秒前
Biao发布了新的文献求助10
9秒前
Aamidtou完成签到,获得积分10
11秒前
Biao完成签到,获得积分10
16秒前
jiaozhiping完成签到,获得积分10
16秒前
18秒前
20秒前
20秒前
TheSilencer完成签到 ,获得积分10
22秒前
风趣尔琴发布了新的文献求助10
24秒前
dennisysz发布了新的文献求助10
24秒前
25秒前
失眠采白完成签到,获得积分10
25秒前
Wenfei_zhang发布了新的文献求助10
26秒前
27秒前
宇航完成签到,获得积分10
29秒前
打打应助风趣尔琴采纳,获得10
29秒前
星夜发布了新的文献求助10
32秒前
英姑应助美好斓采纳,获得10
33秒前
33秒前
张.发布了新的文献求助10
34秒前
刻苦的秋柔完成签到,获得积分10
37秒前
十七完成签到 ,获得积分10
37秒前
佰斯特威应助wonder123采纳,获得10
41秒前
41秒前
42秒前
42秒前
小学猹完成签到,获得积分10
43秒前
46秒前
47秒前
yydidi发布了新的文献求助30
48秒前
TTT完成签到,获得积分10
48秒前
大喜子完成签到,获得积分20
50秒前
51秒前
玄妙发布了新的文献求助10
52秒前
听风飘逸发布了新的文献求助10
52秒前
慕青应助星夜采纳,获得10
53秒前
瘦瘦冰枫完成签到,获得积分10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211743
捐赠科研通 3038195
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133