Exploring Oblique Rotation Factor to Restructure Deep Hyperspectral Image Classification

高光谱成像 人工智能 斜格 计算机科学 卷积神经网络 分类器(UML) 降维 模式识别(心理学) 旋转(数学) 数学 哲学 语言学
作者
Chunzhi Li,Xinyu Li,Jinbo Wang,Xiaohua Chen,Yuan Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3263296
摘要

Factor analysis (FA) is commonly used in fields such as economics and now being introduced as a new tool on dimensionality reduction (DR) for hyperspectral image classification (HSIC) , but FA usually employed orthogonal rotation to directly maximize the separation among factors, which would oversimplify the relationships between variables and factors, worse still, the orthogonal rotation often distorts the true relationships between underlying traits in real life and can not always accurately represent these relationships. To this end, this letter proposes a DR algorithm about FA based on oblique rotation Oblimax to improve HSIC. Firstly, the common factors are extracted from the hyperspectral data to form a factor loading matrix which will be obliquely rotated, then its factor score is estimated to obtain the eigen dimensions for the hyperspectral data, thus realizing DR. On the basis of the successful DR, a deep classifier is constructed, specially, a double-branch structure about 3 dimensional-convolutional neural networks (3D-CNN) with different sizes is restructured to extract multi-scale spatial-spectral features, and early fusion is performed on the features, then 2 dimensional-convolutional neural networks (2D-CNN) is restructured to reduce the computational complexity and learns more spatial features. Finally, the accuracy of the proposed algorithm on the datasets Indian Pines, Kennedy Space Center and Muufl Gulfport, respectively achieves 99.78%, 99.95% and 95.57%. It shows that the proposed algorithm in this letter has advantages in improving the classification accuracy and reducing the complexity of computation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕予完成签到 ,获得积分10
1秒前
玩命做研究完成签到 ,获得积分10
1秒前
3秒前
Richard完成签到,获得积分10
5秒前
5秒前
5秒前
等待冬亦应助张东泽采纳,获得10
6秒前
可爱的函函应助不吃西瓜采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
Oracle应助科研通管家采纳,获得30
7秒前
wy.he应助科研通管家采纳,获得10
7秒前
7秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
旭尧天完成签到,获得积分10
9秒前
RUC_Zhao发布了新的文献求助30
11秒前
11秒前
12秒前
爬不起来发布了新的文献求助10
13秒前
13秒前
14秒前
勤劳的忆寒完成签到,获得积分0
14秒前
两天浇一次水完成签到,获得积分10
14秒前
白翊辰发布了新的文献求助10
16秒前
寒冷向真发布了新的文献求助10
17秒前
dou发布了新的文献求助10
17秒前
尔尔完成签到,获得积分10
17秒前
翔翔超人发布了新的文献求助10
19秒前
科研小扒菜完成签到,获得积分10
19秒前
诚心凝蝶完成签到,获得积分10
21秒前
22秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835031
求助须知:如何正确求助?哪些是违规求助? 3377559
关于积分的说明 10499056
捐赠科研通 3097028
什么是DOI,文献DOI怎么找? 1705435
邀请新用户注册赠送积分活动 820590
科研通“疑难数据库(出版商)”最低求助积分说明 772123