Structure-based virtual screening and molecular dynamics simulations for detecting novel candidates for allosteric inhibition of EGFRT790M

虚拟筛选 变构调节 分子动力学 化学 对接(动物) 化学图书馆 结合能 分子 结合位点 计算化学 小分子 受体 生物化学 有机化学 医学 物理 护理部 核物理学
作者
Güneş Çoban
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-27 被引量:1
标识
DOI:10.1080/07391102.2023.2194425
摘要

Structure-based virtual screening (SBVS) was applied to predict lead compounds for the allosteric inhibition of epidermal growth factor receptor (EGFR) by screening the library of chemical compounds prepared from the e-molecules chemical database. The library of chemical compounds consisting of 133,083 ligands was composed by evaluating the chemical and physical properties of e-molecules chemicals. The prepared library was screened by CCDC Gold software in the allosteric binding site of EGFRT790M using the library and virtual screening default parameters to filter out, respectively. The GOLD fitness scores 75 and 80 were selected as threshold values for the library and virtual screening processes, respectively. After the docking study, molecular dynamics simulations (MDS) of the top 25 compounds were built for calculating binding free energies from their MDS trajectories. MM-GBSA binding free energies for the compounds were computed from 20 ns MDS, 50 ns MDS and 200 ns MDS trajectories to filter out the candidates. Following MM-GBSA/MM-PBSA binding free energy calculations, six compounds were detected as the most promising candidates for allosteric inhibition of EGFRT790M. The dynamic behaviors of final compounds inside EGFR T790M were searched using structure stability, binding modes and energy decomposition analysis. Besides, the estimated inhibitors were exposed to docking study and MM-GBSA/MM-PBSA binding free energy calculations inside wild-type EGFR, respectively, to be determined their selectivity towards mutant form. Five of the estimated inhibitors displayed estimated selectivity towards EGFRT790M. Besides the ADMET properties of the estimated inhibitors were predicted by PreAdmet tools.Communicated by Ramaswamy H. Sarma

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiangmi完成签到,获得积分10
刚刚
淇媛发布了新的文献求助10
刚刚
1秒前
芋泥啵啵完成签到,获得积分10
1秒前
下雨了完成签到,获得积分10
1秒前
lancelot发布了新的文献求助10
2秒前
2秒前
guojing1321发布了新的文献求助10
4秒前
科研通AI6.1应助勇entcui采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
白开水发布了新的文献求助10
6秒前
6秒前
Ashley发布了新的文献求助10
6秒前
7秒前
7秒前
小溪完成签到 ,获得积分10
7秒前
淇媛完成签到,获得积分20
7秒前
无极微光应助悦耳的锦程采纳,获得20
8秒前
8秒前
WYJie发布了新的文献求助10
8秒前
考马斯亮蓝完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
马铭泽发布了新的文献求助10
10秒前
打打应助孙朱珠采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
shero发布了新的文献求助10
12秒前
12秒前
停停走走发布了新的文献求助10
13秒前
传奇3应助外向的梦安采纳,获得10
13秒前
007完成签到,获得积分10
14秒前
吱吱吱吱完成签到,获得积分10
14秒前
pp发布了新的文献求助10
15秒前
鳗鱼如松发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760818
求助须知:如何正确求助?哪些是违规求助? 5526191
关于积分的说明 15398334
捐赠科研通 4897505
什么是DOI,文献DOI怎么找? 2634199
邀请新用户注册赠送积分活动 1582335
关于科研通互助平台的介绍 1537676