半经典物理学
数学
二次方程
不变(物理)
数学物理
摄动(天文学)
组合数学
数学分析
物理
量子力学
几何学
量子
作者
Lu Yang,Xiangqing Liu,Jianwen Zhou
标识
DOI:10.58997/ejde.2023.75
摘要
In this article concerns the semiclassical Choquard equation \(-\varepsilon^2 \Delta u +V(x)u = \varepsilon^{-2}( \frac{1}{|\cdot|}* u^2)u\) for \(x \in \mathbb{R}^3\) and small \(\varepsilon\). We establish the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function \(V\), by means of the perturbation method and the method of invariant sets of descending flow. For more information see https://ejde.math.txstate.edu/Volumes/2023/75/abstr.html
科研通智能强力驱动
Strongly Powered by AbleSci AI