DFT-Quality Adsorption Simulations in Metal–Organic Frameworks Enabled by Machine Learning Potentials

纳米孔 吸附 密度泛函理论 金属有机骨架 力场(虚构) 材料科学 计算机科学 分子间力 色散(光学) 分子 计算化学 热力学 化学 纳米技术 物理化学 物理 人工智能 量子力学 有机化学
作者
Ruben Goeminne,Louis Vanduyfhuys,Véronique Van Speybroeck,Toon Verstraelen
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (18): 6313-6325 被引量:60
标识
DOI:10.1021/acs.jctc.3c00495
摘要

Nanoporous materials such as metal-organic frameworks (MOFs) have been extensively studied for their potential for adsorption and separation applications. In this respect, grand canonical Monte Carlo (GCMC) simulations have become a well-established tool for computational screenings of the adsorption properties of large sets of MOFs. However, their reliance on empirical force field potentials has limited the accuracy with which this tool can be applied to MOFs with challenging chemical environments such as open-metal sites. On the other hand, density-functional theory (DFT) is too computationally demanding to be routinely employed in GCMC simulations due to the excessive number of required function evaluations. Therefore, we propose in this paper a protocol for training machine learning potentials (MLPs) on a limited set of DFT intermolecular interaction energies (and forces) of CO2 in ZIF-8 and the open-metal site containing Mg-MOF-74, and use the MLPs to derive adsorption isotherms from first principles. We make use of the equivariant NequIP model which has demonstrated excellent data efficiency, and as such an error on the interaction energies below 0.2 kJ mol-1 per adsorbate in ZIF-8 was attained. Its use in GCMC simulations results in highly accurate adsorption isotherms and heats of adsorption. For Mg-MOF-74, a large dependence of the obtained results on the used dispersion correction was observed, where PBE-MBD performs the best. Lastly, to test the transferability of the MLP trained on ZIF-8, it was applied to ZIF-3, ZIF-4, and ZIF-6, which resulted in large deviations in the predicted adsorption isotherms and heats of adsorption. Only when explicitly training on data for all ZIFs, accurate adsorption properties were obtained. As the proposed methodology is widely applicable to guest adsorption in nanoporous materials, it opens up the possibility for training general-purpose MLPs to perform highly accurate investigations of guest adsorption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
elebug完成签到,获得积分10
1秒前
zby完成签到,获得积分10
1秒前
1秒前
小郑顺利毕业完成签到,获得积分10
1秒前
友好的小虾米完成签到,获得积分10
1秒前
2秒前
Akim应助27采纳,获得10
2秒前
2秒前
贝利亚完成签到,获得积分10
2秒前
知性的以筠完成签到 ,获得积分10
2秒前
栗子完成签到 ,获得积分10
2秒前
Robert完成签到,获得积分10
2秒前
打打应助sxystc采纳,获得10
3秒前
我是老大应助乖加油采纳,获得10
3秒前
初学者完成签到,获得积分10
3秒前
酱子完成签到,获得积分10
4秒前
4秒前
温酒筚篥完成签到,获得积分10
4秒前
liu发布了新的文献求助10
4秒前
章建清完成签到 ,获得积分10
4秒前
专一的凛完成签到,获得积分10
5秒前
Dylan完成签到,获得积分10
5秒前
深深发布了新的文献求助10
5秒前
王子完成签到,获得积分10
6秒前
ZQ完成签到,获得积分10
6秒前
充电宝应助zzh采纳,获得10
7秒前
香蕉纹完成签到,获得积分10
7秒前
hhhqi完成签到,获得积分10
7秒前
lsl完成签到,获得积分10
7秒前
如意完成签到,获得积分10
7秒前
8秒前
YuZhang完成签到,获得积分10
8秒前
8秒前
传奇3应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得30
9秒前
amberzyc应助科研通管家采纳,获得10
9秒前
lilili应助科研通管家采纳,获得10
9秒前
Hilda007应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256834
求助须知:如何正确求助?哪些是违规求助? 4419081
关于积分的说明 13754519
捐赠科研通 4292230
什么是DOI,文献DOI怎么找? 2355404
邀请新用户注册赠送积分活动 1351852
关于科研通互助平台的介绍 1312634