持续性
小型水电站
环境资源管理
水力发电
背景(考古学)
业务
公司治理
环境规划
环境经济学
地理
环境科学
生态学
经济
考古
财务
生物
作者
Jiwei Zhu,Jianmei Zhang,Hong Wu,Xihan Yi,Yu Liu
标识
DOI:10.1016/j.jenvman.2023.119523
摘要
Small hydropower (SHP) has made significant contributions to economic and social development in rural and remote mountainous regions. However, the adverse ecological-environmental impacts resulting from the SHP sector and challenges in hydropower management have become major areas of concern. From an Environmental, Social, and Governance (ESG) perspective and using three SHP stations (GXD, WZL, and SJB) in the Qin-Ba Mountains as case studies, we constructed a sustainability assessment system comprising 18 indicators across three dimensions. The hesitant fuzzy linguistic term sets (HFLTSs) and cloud models were employed to determine the sustainability level of SHP by characterizing the hesitancy of the evaluator and the uncertainty of the evaluated data. (1) The ecological-environmental protection (E) dimension was assigned the greatest weight, followed by the dimensions of social responsibility contribution (S) and corporate governance management (G). The weights of certain indicators, including the water qualification rate, river morphology maintenance, guaranteed rate of instream flow, comprehensive utilization, and production safety standardization grade were relatively high, conforming to the current context of green development prioritization in which ecological-environmental protection is of the utmost importance. (2) The overall sustainability levels of all three SHP stations were “good”, with the E-dimension contributing the most and the G-dimension contributing the least to the sustainability goal. (3) The GXD, WZL, and SJB stations were ranked first, second, and third, respectively, in terms of their sustainability scores. This study provides an innovative perspective for the sustainability assessment of SHP. The evaluation method can be generalized to encompass multi-attribute decision-making problems. The findings of this study can aid in addressing the shortcomings associated with SHP development and promote sustainability within the SHP industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI