Realistic fault detection of li-ion battery via dynamical deep learning

深度学习 自编码 软件部署 电池(电) 计算机科学 人工智能 异常检测 故障检测与隔离 电池组 机器学习 断层(地质) 可靠性工程 功率(物理) 工程类 地质学 物理 地震学 执行机构 操作系统 量子力学
作者
Jingzhao Zhang,Yanan Wang,Benben Jiang,Haowei He,Shaobo Huang,Chen Wang,Yang Zhang,Xuebing Han,Dongxu Guo,Guannan He,Minggao Ouyang
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:14 (1) 被引量:51
标识
DOI:10.1038/s41467-023-41226-5
摘要

Accurate evaluation of Li-ion battery (LiB) safety conditions can reduce unexpected cell failures, facilitate battery deployment, and promote low-carbon economies. Despite the recent progress in artificial intelligence, anomaly detection methods are not customized for or validated in realistic battery settings due to the complex failure mechanisms and the lack of real-world testing frameworks with large-scale datasets. Here, we develop a realistic deep-learning framework for electric vehicle (EV) LiB anomaly detection. It features a dynamical autoencoder tailored for dynamical systems and configured by social and financial factors. We test our detection algorithm on released datasets comprising over 690,000 LiB charging snippets from 347 EVs. Our model overcomes the limitations of state-of-the-art fault detection models, including deep learning ones. Moreover, it reduces the expected direct EV battery fault and inspection costs. Our work highlights the potential of deep learning in improving LiB safety and the significance of social and financial information in designing deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
望远山完成签到,获得积分10
刚刚
zho应助黄磊采纳,获得10
刚刚
dd发布了新的文献求助10
1秒前
ding应助yoyo采纳,获得10
6秒前
香蕉觅云应助小西米采纳,获得10
6秒前
苏青舟完成签到 ,获得积分10
6秒前
8秒前
8秒前
Xieyusen完成签到,获得积分10
8秒前
H哈完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
13秒前
13秒前
cloud发布了新的文献求助10
14秒前
小丑鱼儿发布了新的文献求助10
15秒前
jphu发布了新的文献求助10
15秒前
distance发布了新的文献求助10
16秒前
miaomiao发布了新的文献求助30
16秒前
陈牛逼完成签到 ,获得积分10
17秒前
17秒前
zho应助yexiyuan采纳,获得10
17秒前
宇文傲龙发布了新的文献求助10
17秒前
大瑶发布了新的文献求助10
19秒前
AAAAA给kklin的求助进行了留言
19秒前
小西米发布了新的文献求助10
20秒前
小v的格洛米完成签到,获得积分10
22秒前
22秒前
充电宝应助美好的酸奶采纳,获得10
23秒前
yexiyuan完成签到,获得积分10
23秒前
25秒前
勋出色完成签到,获得积分10
25秒前
26秒前
26秒前
ww完成签到,获得积分20
28秒前
852应助张万州采纳,获得10
28秒前
Gonna_stop完成签到,获得积分10
28秒前
dd完成签到,获得积分20
29秒前
adobe完成签到,获得积分10
30秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824368
求助须知:如何正确求助?哪些是违规求助? 3366662
关于积分的说明 10441995
捐赠科研通 3085959
什么是DOI,文献DOI怎么找? 1697631
邀请新用户注册赠送积分活动 816447
科研通“疑难数据库(出版商)”最低求助积分说明 769640