清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prognosis prediction of patients with malignant pleural mesothelioma using conditional variational autoencoder on 3D PET images and clinical data

自编码 人工智能 降维 模式识别(心理学) 卷积神经网络 随机森林 医学影像学 深度学习 正电子发射断层摄影术 计算机科学 分类器(UML) 医学 放射科
作者
H Matsuo,Kazuhiro Kitajima,Atsushi K. Kono,Kozo Kuribayashi,Takashi Kijima,Masaki Hashimoto,Seiki Hasegawa,Koichiro Yamakado,Takamichi Murakami
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7548-7557 被引量:1
标识
DOI:10.1002/mp.16694
摘要

Deep learning (DL) has been widely used for diagnosis and prognosis prediction of numerous frequently occurring diseases. Generally, DL models require large datasets to perform accurate and reliable prognosis prediction and avoid overlearning. However, prognosis prediction of rare diseases is still limited owing to the small number of cases, resulting in small datasets.This paper proposes a multimodal DL method to predict the prognosis of patients with malignant pleural mesothelioma (MPM) with a small number of 3D positron emission tomography-computed tomography (PET/CT) images and clinical data.A 3D convolutional conditional variational autoencoder (3D-CCVAE), which adds a 3D-convolutional layer and conditional VAE to process 3D images, was used for dimensionality reduction of PET images. We developed a two-step model that performs dimensionality reduction using the 3D-CCVAE, which is resistant to overlearning. In the first step, clinical data were input to condition the model and perform dimensionality reduction of PET images, resulting in more efficient dimension reduction. In the second step, a subset of the dimensionally reduced features and clinical data were combined to predict 1-year survival of patients using the random forest classifier. To demonstrate the usefulness of the 3D-CCVAE, we created a model without the conditional mechanism (3D-CVAE), one without the variational mechanism (3D-CCAE), and one without an autoencoder (without AE), and compared their prediction results. We used PET images and clinical data of 520 patients with histologically proven MPM. The data were randomly split in a 2:1 ratio (train : test) and three-fold cross-validation was performed. The models were trained on the training set and evaluated based on the test set results. The area under the receiver operating characteristic curve (AUC) for all models was calculated using their 1-year survival predictions, and the results were compared.We obtained AUC values of 0.76 (95% confidence interval [CI], 0.72-0.80) for the 3D-CCVAE model, 0.72 (95% CI, 0.68-0.77) for the 3D-CVAE model, 0.70 (95% CI, 0.66-0.75) for the 3D-CCAE model, and 0.69 (95% CI 0.65-0.74) for the without AE model. The 3D-CCVAE model performed better than the other models (3D-CVAE, p = 0.039; 3D-CCAE, p = 0.0032; and without AE, p = 0.0011).This study demonstrates the usefulness of the 3D-CCVAE in multimodal DL models learned using a small number of datasets. Additionally, it shows that dimensionality reduction via AE can be used to learn a DL model without increasing the overlearning risk. Moreover, the VAE mechanism can overcome the uncertainty of the model parameters that commonly occurs for small datasets, thereby eliminating the risk of overlearning. Additionally, more efficient dimensionality reduction of PET images can be performed by providing clinical data as conditions and ignoring clinical data-related features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博修完成签到,获得积分10
11秒前
zhilianghui0807完成签到 ,获得积分10
17秒前
害羞便当完成签到 ,获得积分10
24秒前
36秒前
罗鸯鸯发布了新的文献求助10
42秒前
忧虑的静柏完成签到 ,获得积分10
50秒前
artnon发布了新的文献求助10
1分钟前
yu_z完成签到 ,获得积分10
1分钟前
共享精神应助阿娟儿采纳,获得10
1分钟前
罗鸯鸯发布了新的文献求助10
1分钟前
细心的代天完成签到 ,获得积分10
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
范白容完成签到 ,获得积分0
1分钟前
合适醉蝶完成签到 ,获得积分10
1分钟前
1分钟前
Dr.c发布了新的文献求助10
1分钟前
2分钟前
阿娟儿发布了新的文献求助10
2分钟前
ARIA完成签到 ,获得积分10
2分钟前
阿娟儿完成签到,获得积分10
2分钟前
阔达的傲MUMU完成签到 ,获得积分10
2分钟前
al完成签到 ,获得积分10
2分钟前
yshj完成签到 ,获得积分10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
2分钟前
冰雨Flory完成签到,获得积分10
2分钟前
JamesPei应助nojego采纳,获得10
2分钟前
Noah完成签到 ,获得积分0
2分钟前
罗鸯鸯完成签到,获得积分10
2分钟前
2分钟前
yuna_yqc完成签到 ,获得积分10
2分钟前
Dr.c发布了新的文献求助10
2分钟前
ii完成签到 ,获得积分10
2分钟前
Lucas应助danrushui777采纳,获得10
3分钟前
Dr.c完成签到,获得积分10
3分钟前
3分钟前
研友_nVWP2Z完成签到 ,获得积分10
3分钟前
danrushui777发布了新的文献求助10
3分钟前
椿iii完成签到 ,获得积分10
3分钟前
飞雪完成签到,获得积分10
3分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825038
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445271
捐赠科研通 3086738
什么是DOI,文献DOI怎么找? 1698238
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907