What are the dominant factors and optimal driving threshold for the synergy and tradeoff between ecosystem services, from a nonlinear coupling perspective?

非线性系统 联轴节(管道) 区间(图论) 统计 线性回归 计算机科学 计量经济学 人工智能 数学 环境科学 工程类 物理 组合数学 机械工程 量子力学
作者
Ziyi Zhang,Zhaomin Tong,Liting Zhang,Yaolin Liu
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:422: 138609-138609 被引量:19
标识
DOI:10.1016/j.jclepro.2023.138609
摘要

Exploring the dominant impact factors and optimal driving threshold of the synergic and trade-off relationship between ecosystem services (ESR) is conducive to the scientific management of the ecosystem. Previous studies seldom take ESR as dependent variables and are primarily based on linear regression models, which is difficult to reflect the real nonlinear ecological process. Based on the spatial mapping for 15 pairs of binary ESR between 6 typical ESs in Fujian Province, this study introduced "glass box" (interpretable and visual) machine learning models to construct a generalizable ESR driving mechanism exploration method system of "ESR spatialization - nonlinear correlation derivation". It visually expounds the nonlinear coupling process between ESR and " natural-socio-economic " variables, and based on this, the dominant factors affecting ESR and their optimal driving threshold interval for the maximized synergy between ESs were determined. The results show that (i) the climate and human traffic activities have the most significant effect on the ESR among the "natural-socio economic" factors. Annual total precipitation, annual sunshine radiation, average annual temperature, distance from railway, and GDP density are the dominant factors affecting the ESR in the sample area. (ii) The correlation between ESR and driving factors is nonlinear. By superimposing the nonlinear response curves of 15 pairs of ESR, the optimal threshold interval of the dominant factor under the guidance of comprehensive synergy maximization in the study area is obtained. (iii) In the comparison of three machine learning models and a linear regression model, the XGBoost model has the best fitting effect, and the machine learning models are all superior to the linear model. The methods and ideas of this study have strong generalization and application and can provide references for research in other regions and scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠叨的曼易完成签到,获得积分10
刚刚
Zhangtao完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
吉祥如意完成签到,获得积分20
2秒前
星辰大海应助Jiao H.P采纳,获得10
2秒前
wangx发布了新的文献求助10
2秒前
沐沐发布了新的文献求助10
2秒前
JCao727完成签到,获得积分10
3秒前
星回二七发布了新的文献求助10
3秒前
SYLH应助火星上的若颜采纳,获得10
3秒前
聪明藏今完成签到,获得积分10
3秒前
Jiang_wencai发布了新的文献求助10
4秒前
yan1875完成签到,获得积分10
4秒前
4秒前
Komorebi完成签到,获得积分20
4秒前
Jinnan完成签到,获得积分10
4秒前
万莎莎发布了新的文献求助10
4秒前
乐观的幼珊完成签到,获得积分10
5秒前
木目丶发布了新的文献求助10
5秒前
5秒前
wanli445完成签到,获得积分10
5秒前
愉快天亦完成签到,获得积分10
5秒前
CodeCraft应助淡淡书竹采纳,获得10
6秒前
深情安青应助Shilly采纳,获得10
6秒前
华仔应助zhangzhang采纳,获得10
6秒前
7秒前
无花果应助能干宛秋采纳,获得10
7秒前
7秒前
Jinnan发布了新的文献求助10
8秒前
丁的完成签到,获得积分10
9秒前
阿尔卑斯完成签到,获得积分10
9秒前
革命努力发布了新的文献求助10
10秒前
星回二七完成签到,获得积分10
11秒前
发SCI完成签到,获得积分20
11秒前
打打应助科学家采纳,获得10
12秒前
斯文雪青完成签到,获得积分10
12秒前
昏睡的蟠桃应助Shilly采纳,获得20
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798