深共晶溶剂
纤维素
溶剂
化学工程
热稳定性
化学
傅里叶变换红外光谱
核化学
纤维
材料科学
元素分析
共晶体系
有机化学
合金
工程类
作者
Lu Tang,Bo Wang,Shiru Bai,Bei Fan,Liang Zhang,Fengzhong Wang
标识
DOI:10.1016/j.carbpol.2023.121485
摘要
Because the traditional preparation methods of cellulose nanocrystals (CNCs) involve chemical pollution issues, in this study, two typical green solvents, alkali/urea solvent (AUS) and deep-eutectic solvent (DES), were used to dissolve insoluble soybean fibers (ISF) extracted from okara and prepare regenerated CNCs (AUS/CNC and DES/CNC), which were further modified by TEMPO oxidation (AUS/T-CNC and DES/T-CNC). The recoveries of AUS and DES were 82.58 % and 84.00 %, respectively. Chemical composition analysis showed high cellulose purity (>95 %) of the regenerated CNCs. FTIR, XRD and 13C NMR analysis indicated the cellulose structure and polymorph of CNCs. Thermal analysis revealed that the maximum degradation peak of regenerated CNC shifted to a lower temperature. AFM revealed that CNCs exhibited rod-like fiber structures, while AUS-pretreated CNCs exhibited some special spherical fibers. TEMPO oxidation showed an enhancement effect on the characteristics of AUS/T-CNC and DES/T-CNC; DES/T-CNC exhibited higher stability and apparent viscosity than AUS/T-CNC. The DES/T-CNC-based cryogel displayed a higher adsorption capacity for anthocyanin (0.40 g/g) and curcumin (1.09 g/g) with good controlled release capacity. These results indicated that green solvent pretreatment-assisted TEMPO oxidation is a new environmentally friendly and low-cost method for the preparation of CNCs and shows excellent potential in the field of drug loading and controlled release.
科研通智能强力驱动
Strongly Powered by AbleSci AI