Pan-mediastinal neoplasm diagnosis via nationwide federated learning: a multicentre cohort study

队列 纵隔 医学 放射科 人口 接收机工作特性 内科学 环境卫生
作者
Ruijie Tang,Hengrui Liang,Yuchen Guo,Zhigang Li,Zhichao Liu,Lin Xu,Zeping Yan,Jun Liu,Xin Xu,Wenlong Shao,Shuben Li,Wenhua Liang,Wei Wang,Fei Cui,Huanghe He,Chao Yang,Long Jiang,Haixuan Wang,Huai Chen,Chenguang Guo
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (9): e560-e570 被引量:4
标识
DOI:10.1016/s2589-7500(23)00106-1
摘要

Mediastinal neoplasms are typical thoracic diseases with increasing incidence in the general global population and can lead to poor prognosis. In clinical practice, the mediastinum's complex anatomic structures and intertype confusion among different mediastinal neoplasm pathologies severely hinder accurate diagnosis. To solve these difficulties, we organised a multicentre national collaboration on the basis of privacy-secured federated learning and developed CAIMEN, an efficient chest CT-based artificial intelligence (AI) mediastinal neoplasm diagnosis system.In this multicentre cohort study, 7825 mediastinal neoplasm cases and 796 normal controls were collected from 24 centres in China to develop CAIMEN. We further enhanced CAIMEN with several novel algorithms in a multiview, knowledge-transferred, multilevel decision-making pattern. CAIMEN was tested by internal (929 cases at 15 centres), external (1216 cases at five centres and a real-world cohort of 11 162 cases), and human-AI (60 positive cases from four centres and radiologists from 15 institutions) test sets to evaluate its detection, segmentation, and classification performance.In the external test experiments, the area under the receiver operating characteristic curve for detecting mediastinal neoplasms of CAIMEN was 0·973 (95% CI 0·969-0·977). In the real-world cohort, CAIMEN detected 13 false-negative cases confirmed by radiologists. The dice score for segmenting mediastinal neoplasms of CAIMEN was 0·765 (0·738-0·792). The mediastinal neoplasm classification top-1 and top-3 accuracy of CAIMEN were 0·523 (0·497-0·554) and 0·799 (0·778-0·822), respectively. In the human-AI test experiments, CAIMEN outperformed clinicians with top-1 and top-3 accuracy of 0·500 (0·383-0·633) and 0·800 (0·700-0·900), respectively. Meanwhile, with assistance from the computer aided diagnosis software based on CAIMEN, the 46 clinicians improved their average top-1 accuracy by 19·1% (0·345-0·411) and top-3 accuracy by 13·0% (0·545-0·616).For mediastinal neoplasms, CAIMEN can produce high diagnostic accuracy and assist the diagnosis of human experts, showing its potential for clinical practice.National Key R&D Program of China, National Natural Science Foundation of China, and Beijing Natural Science Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浅尝离白发布了新的文献求助10
2秒前
2秒前
焱焱发布了新的文献求助10
6秒前
Swear123发布了新的文献求助10
6秒前
烙饼完成签到 ,获得积分10
6秒前
爱丽丝敏发布了新的文献求助10
7秒前
失眠夜玉完成签到,获得积分10
7秒前
9秒前
11秒前
李旭然发布了新的文献求助10
12秒前
赘婿应助明理背包采纳,获得30
14秒前
李健应助焱焱采纳,获得10
15秒前
17秒前
豆子发布了新的文献求助10
18秒前
19秒前
21秒前
hisheyw发布了新的文献求助10
22秒前
矮小的凡阳完成签到 ,获得积分10
24秒前
白兔奶糖发布了新的文献求助10
25秒前
打打应助小七采纳,获得10
25秒前
26秒前
刻苦的嫣发布了新的文献求助10
26秒前
Ethanyoyo0917完成签到,获得积分10
27秒前
27秒前
28秒前
bkagyin应助nihao采纳,获得10
29秒前
无限安蕾完成签到,获得积分10
29秒前
木之尹完成签到 ,获得积分10
31秒前
32秒前
所所应助lwg采纳,获得10
35秒前
35秒前
研友_VZG7GZ应助腾腾腾采纳,获得30
36秒前
RR发布了新的文献求助10
37秒前
38秒前
核桃应助zzzk采纳,获得10
38秒前
领导范儿应助白兔奶糖采纳,获得10
39秒前
39秒前
易烊干洗发布了新的文献求助30
39秒前
AnyYuan完成签到 ,获得积分10
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810513
求助须知:如何正确求助?哪些是违规求助? 3354991
关于积分的说明 10373724
捐赠科研通 3071509
什么是DOI,文献DOI怎么找? 1686999
邀请新用户注册赠送积分活动 811345
科研通“疑难数据库(出版商)”最低求助积分说明 766619