Collaborative deep semi-supervised learning with knowledge distillation for surface defect classification

计算机科学 人工智能 机器学习 卷积神经网络 推论 半监督学习 深度学习 监督学习 可靠性(半导体) 标记数据 人工神经网络 质量(理念) 数据挖掘 哲学 功率(物理) 物理 认识论 量子力学
作者
Siyamalan Manivannan
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:186: 109766-109766
标识
DOI:10.1016/j.cie.2023.109766
摘要

Defect inspection plays a vital role in ensuring high-quality production in industrial automation. While supervised approaches have been successful, they rely on costly labeled data. To address this limitation, semi-supervised methods have gained popularity, utilizing both labeled and unlabeled data for training. This research addresses the challenge of noisy semi-supervised training caused by incorrect pseudo-labels in Convolutional Neural Network based models. To enhance the accuracy and reliability of pseudo-label selection, a novel collaborative learning strategy with knowledge distillation for defect classification is proposed. The proposed approach involves training a set of teacher networks collaboratively, allowing them to collectively determine the pseudo-labels for each unlabeled image and improving the quality of pseudo-labeling. Subsequently, each teacher network is trained using these pseudo-labeled data. Finally, the acquired collaborative knowledge is transferred to a single student network, reducing model complexity, memory requirements, and enabling faster inference during deployment. The proposed approach demonstrates competitive performance on three publicly available defect classification datasets: NEU steel surfaces, SLS laser powder beds, and Surface Textures, achieving results comparable to the state-of-the-art. Notably, remarkable accuracy is achieved even with limited labeled data during training. For instance, on the SLS dataset, the proposed approach achieves 97% accuracy, which is comparable to the state-of-the-art's 98% accuracy when using 100% of labeled data. Remarkably, the proposed approach accomplishes this level of accuracy using only 3% of the labeled training data, showcasing its efficiency and effectiveness in leveraging limited labeled data to achieve impressive results. Source code is available at https://github.com/M-Siyamalan/CDSSLwithKD/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sen123完成签到,获得积分10
2秒前
2秒前
Kate发布了新的文献求助10
4秒前
安详怀蕾发布了新的文献求助10
5秒前
5秒前
SciGPT应助123采纳,获得10
5秒前
上官若男应助七七采纳,获得10
5秒前
烟花应助调皮的蓝天采纳,获得10
6秒前
aaa完成签到 ,获得积分10
8秒前
Lee完成签到,获得积分10
9秒前
10秒前
vvv发布了新的文献求助10
12秒前
12秒前
科研通AI5应助安详怀蕾采纳,获得10
13秒前
小杨爱吃羊完成签到 ,获得积分10
14秒前
14秒前
晴语发布了新的文献求助10
15秒前
volcano完成签到 ,获得积分10
15秒前
happiness完成签到 ,获得积分10
16秒前
霸气凡白发布了新的文献求助10
16秒前
今后应助panbaobao采纳,获得10
19秒前
研友_VZG7GZ应助落日晚归舟采纳,获得10
19秒前
七七发布了新的文献求助10
19秒前
DAN_完成签到,获得积分10
20秒前
葶苈子完成签到 ,获得积分10
21秒前
FashionBoy应助PLAGH221采纳,获得10
23秒前
嘻嘻叮完成签到,获得积分10
23秒前
零度完成签到 ,获得积分10
23秒前
今后应助留胡子的霖采纳,获得10
27秒前
Henry完成签到,获得积分10
33秒前
ding应助vvv采纳,获得10
34秒前
34秒前
jxm完成签到 ,获得积分10
38秒前
39秒前
口爱DI乔巴完成签到,获得积分10
39秒前
41秒前
霸气凡白完成签到,获得积分10
45秒前
脑洞疼应助jinzhen采纳,获得10
46秒前
Cruffin完成签到 ,获得积分10
47秒前
123发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779823
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222188
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758552