MultiIB‐TransUNet: Transformer with multiple information bottleneck blocks for CT and ultrasound image segmentation

计算机科学 分割 过度拟合 人工智能 图像分割 变压器 模式识别(心理学) 电压 人工神经网络 工程类 电气工程
作者
Guangju Li,Dehu Jin,Qi Yu,Yuanjie Zheng,Meng Qi
出处
期刊:Medical Physics [Wiley]
卷期号:51 (2): 1178-1189 被引量:13
标识
DOI:10.1002/mp.16662
摘要

Abstract Background Accurate medical image segmentation is crucial for disease diagnosis and surgical planning. Transformer networks offer a promising alternative for medical image segmentation as they can learn global features through self‐attention mechanisms. To further enhance performance, many researchers have incorporated more Transformer layers into their models. However, this approach often results in the model parameters increasing significantly, causing a potential rise in complexity. Moreover, the datasets of medical image segmentation usually have fewer samples, which leads to the risk of overfitting of the model. Purpose This paper aims to design a medical image segmentation model that has fewer parameters and can effectively alleviate overfitting. Methods We design a MultiIB‐Transformer structure consisting of a single Transformer layer and multiple information bottleneck (IB) blocks. The Transformer layer is used to capture long‐distance spatial relationships to extract global feature information. The IB block is used to compress noise and improve model robustness. The advantage of this structure is that it only needs one Transformer layer to achieve the state‐of‐the‐art (SOTA) performance, significantly reducing the number of model parameters. In addition, we designed a new skip connection structure. It only needs two 1× 1 convolutions, the high‐resolution feature map can effectively have both semantic and spatial information, thereby alleviating the semantic gap. Results The proposed model is on the Breast UltraSound Images (BUSI) dataset, and the IoU and F1 evaluation indicators are 67.75 and 87.78. On the Synapse multi‐organ segmentation dataset, the Param, Hausdorff Distance (HD) and Dice Similarity Cofficient (DSC) evaluation indicators are 22.30, 20.04 and 81.83. Conclusions Our proposed model (MultiIB‐TransUNet) achieved superior results with fewer parameters compared to other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴富完成签到,获得积分10
刚刚
yuC完成签到,获得积分10
刚刚
2秒前
易槐发布了新的文献求助10
2秒前
图样图森破完成签到,获得积分10
2秒前
风清扬应助彩色的中蓝采纳,获得30
3秒前
3秒前
诚心盼海发布了新的文献求助10
4秒前
夏佳泽完成签到 ,获得积分10
4秒前
UUU完成签到 ,获得积分10
4秒前
邦邦发布了新的文献求助10
4秒前
土豆完成签到 ,获得积分10
5秒前
5秒前
充电宝应助邢凡柔采纳,获得10
6秒前
顾矜应助秦始皇采纳,获得10
6秒前
6秒前
SYLH应助动点子智慧采纳,获得10
6秒前
6秒前
xhf发布了新的文献求助10
7秒前
陶征应助勤劳的鸡采纳,获得10
7秒前
8秒前
Singularity应助多背单词采纳,获得10
8秒前
8秒前
whatever举报求助违规成功
8秒前
CAOHOU举报求助违规成功
8秒前
千跃举报求助违规成功
8秒前
8秒前
风趣的老太应助andrewyu采纳,获得10
8秒前
9秒前
9秒前
归尘发布了新的文献求助10
10秒前
11秒前
11秒前
乐乐妈完成签到,获得积分10
12秒前
bkagyin应助_Dearlxy采纳,获得10
13秒前
13秒前
瘦瘦依白应助苏小采纳,获得10
13秒前
xueyan发布了新的文献求助20
13秒前
mao发布了新的文献求助10
13秒前
万能图书馆应助weiweiwei采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979146
求助须知:如何正确求助?哪些是违规求助? 3523056
关于积分的说明 11215854
捐赠科研通 3260487
什么是DOI,文献DOI怎么找? 1800049
邀请新用户注册赠送积分活动 878813
科研通“疑难数据库(出版商)”最低求助积分说明 807092