DEQ-MPI: A Deep Equilibrium Reconstruction With Learned Consistency for Magnetic Particle Imaging

磁粉成像 计算机科学 先验概率 一致性(知识库) 迭代重建 推论 数据一致性 合成数据 一般化 算法 人工智能 数学 磁性纳米粒子 贝叶斯概率 物理 量子力学 纳米颗粒 操作系统 数学分析
作者
Alper Güngör,Baris Askin,Damla Alptekin Soydan,Can Barış Top,Emine Ülkü Sarıtaş,Tolga Çukur
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 321-334 被引量:22
标识
DOI:10.1109/tmi.2023.3300704
摘要

Magnetic particle imaging (MPI) offers unparalleled contrast and resolution for tracing magnetic nanoparticles. A common imaging procedure calibrates a system matrix (SM) that is used to reconstruct data from subsequent scans. The ill-posed reconstruction problem can be solved by simultaneously enforcing data consistency based on the SM and regularizing the solution based on an image prior. Traditional hand-crafted priors cannot capture the complex attributes of MPI images, whereas recent MPI methods based on learned priors can suffer from extensive inference times or limited generalization performance. Here, we introduce a novel physics-driven method for MPI reconstruction based on a deep equilibrium model with learned data consistency (DEQ-MPI). DEQ-MPI reconstructs images by augmenting neural networks into an iterative optimization, as inspired by unrolling methods in deep learning. Yet, conventional unrolling methods are computationally restricted to few iterations resulting in non-convergent solutions, and they use hand-crafted consistency measures that can yield suboptimal capture of the data distribution. DEQ-MPI instead trains an implicit mapping to maximize the quality of a convergent solution, and it incorporates a learned consistency measure to better account for the data distribution. Demonstrations on simulated and experimental data indicate that DEQ-MPI achieves superior image quality and competitive inference time to state-of-the-art MPI reconstruction methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
常常完成签到 ,获得积分10
刚刚
Lucky完成签到 ,获得积分10
刚刚
1秒前
lily完成签到,获得积分10
1秒前
杰森斯坦虎完成签到,获得积分10
1秒前
没有昵称完成签到,获得积分10
1秒前
Orange应助心神依然采纳,获得10
1秒前
羊羊羊完成签到,获得积分10
1秒前
CAESARTANG发布了新的文献求助10
2秒前
2秒前
木子完成签到 ,获得积分10
3秒前
慧慧发布了新的文献求助10
3秒前
3秒前
SGI发布了新的文献求助10
3秒前
3秒前
3秒前
才富郭完成签到 ,获得积分10
4秒前
ekm7k发布了新的文献求助10
4秒前
5秒前
今日不再蛇皇给今日不再蛇皇的求助进行了留言
5秒前
5秒前
JYX完成签到 ,获得积分10
5秒前
huhu发布了新的文献求助10
5秒前
思源应助美好幻灵采纳,获得10
6秒前
年轻寒蕾完成签到,获得积分10
6秒前
7秒前
7秒前
ewetylgkhlj发布了新的文献求助10
7秒前
dabihu完成签到,获得积分10
8秒前
ZJX完成签到,获得积分10
8秒前
小刺猬完成签到,获得积分10
8秒前
kryie发布了新的文献求助10
9秒前
9秒前
fk完成签到,获得积分10
9秒前
高越发布了新的文献求助10
9秒前
奇客完成签到,获得积分10
10秒前
ff完成签到,获得积分10
10秒前
圆1223完成签到 ,获得积分20
10秒前
fancyyyy完成签到,获得积分10
10秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966