Infrared target detection algorithm based on multi-scale edge information extraction

红外线的 比例(比率) 萃取(化学) 计算机科学 GSM演进的增强数据速率 信息抽取 人工智能 材料科学 算法 模式识别(心理学) 光学 物理 色谱法 化学 量子力学
作者
Yonggui Wang,Xueli Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (8): 085211-085211
标识
DOI:10.1088/1361-6501/adfe09
摘要

Abstract In infrared target detection, infrared images suffer from problems such as low resolution, low signal-to-noise ratio, and poor contrast. These issues make it difficult to clearly present the edges and details of targets, resulting in insufficient extraction of multi-scale edge information and fine-grained features. Meanwhile, infrared targets exhibit diverse scales, complex features, and are prone to motion blur, which further increases the difficulty of feature extraction and leads to low detection accuracy and serious missed detections. To address these challenges, we propose a Context Edge MultiScale Fusion- You Only Look Once (CMF-YOLO) algorithm for infrared target detection. Firstly, to address the issues of insufficient extraction of multi-scale edge information and excessive background interference, a cross stage partial-multi-scale edge information selection module is designed within the backbone network and neck of the model. This module enables the model to select the features most relevant to the target from multi-scale edge information, effectively reducing background interference and thus contributing to more precise target localization. Secondly, the conventional spatial pyramid pooling-fast (SPPF) structure employs a static pooling scale during the process, which hinders its capacity to adapt to the varied target scales and intricate characteristics inherent in infrared images. To address this issue, we propose a module called feature pyramid shared dilated convolution as an alternative to SPPF, which combines shared dilation convolution with the feature pyramid structure to effectively improve the accuracy and efficiency of target detection. In addition, a small target detection layer P2 is introduced to improve the detection accuracy of small targets. Moreover, Inner-SIoU is adopted as a new localization regression loss function to enhance the learning capability for small target samples and accelerate the convergence of regression bounding boxes. Comparative experiments are conducted on the Alpha Track dataset captured by iRay Technology, as well as on the publicly available FLIR and NEU-DET datasets. The results demonstrate that the CMF-YOLO algorithm achieves an mAP@0.5 of 92.3% on the Alpha Track dataset, 86.6% on the FLIR dataset, and 87.9% on the NEU-DET dataset. These findings confirm the applicability and high accuracy of the proposed method in infrared target detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
空勒完成签到,获得积分10
2秒前
3秒前
镓氧锌钇铀应助HUANWANG采纳,获得20
3秒前
Am1r完成签到,获得积分10
3秒前
zz发布了新的文献求助10
4秒前
5秒前
是同学完成签到,获得积分20
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
8秒前
Hello应助lyh采纳,获得10
8秒前
8秒前
9秒前
9秒前
万能图书馆应助Liii采纳,获得10
9秒前
Orange应助ROY采纳,获得10
9秒前
10秒前
李健应助拼搏的冰绿采纳,获得10
10秒前
小熊发布了新的文献求助30
11秒前
zhangrun01完成签到,获得积分10
11秒前
12发布了新的文献求助10
11秒前
真正的man发布了新的文献求助10
12秒前
13秒前
14秒前
Yochamme发布了新的文献求助10
14秒前
wyt1239012发布了新的文献求助10
14秒前
cy完成签到,获得积分20
15秒前
算命先生发布了新的文献求助10
15秒前
cy发布了新的文献求助10
17秒前
空勒发布了新的文献求助30
18秒前
大个应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
wwwwwei发布了新的文献求助10
18秒前
xxfsx应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492447
求助须知:如何正确求助?哪些是违规求助? 4590578
关于积分的说明 14431018
捐赠科研通 4523031
什么是DOI,文献DOI怎么找? 2478141
邀请新用户注册赠送积分活动 1463167
关于科研通互助平台的介绍 1435852