Enhanced Dual-Pattern Matching With Vision-Language Representation for Out-of-Distribution Detection

计算机科学 人工智能 推论 匹配(统计) 特征(语言学) 代表(政治) 特征学习 机器学习 模式识别(心理学) 政治学 数学 语言学 政治 统计 哲学 法学
作者
Xiang Xiang,Zhuo Xu,Z. P. Zhang,Zhigang Zeng,Xilin Chen
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (11): 9673-9687
标识
DOI:10.1109/tpami.2025.3590717
摘要

Out-of-distribution (OOD) detection presents a significant challenge in deploying pattern recognition and machine learning models, as they frequently fail to generalize to data from unseen distributions. Recent advancements in vision-language models (VLMs), particularly CLIP, have demonstrated promising results in OOD detection through their rich multimodal representations. However, current CLIP-based OOD detection methods predominantly rely on single-modality in-distribution (ID) data (e.g., textual cues), overlooking the valuable information contained in ID visual cues. In this work, we demonstrate that incorporating ID visual information is crucial for unlocking CLIP's full potential in OOD detection. We propose a novel approach, Dual-Pattern Matching (DPM), which effectively adapts CLIP for OOD detection by jointly exploiting both textual and visual ID patterns. Specifically, DPM refines visual and textual features through the proposed Domain-Specific Feature Aggregation (DSFA) and Prompt Enhancement (PE) modules. Subsequently, DPM stores class-wise textual features as textual patterns and aggregates ID visual features as visual patterns. During inference, DPM calculates similarity scores relative to both patterns to identify OOD data. Furthermore, we enhance DPM with lightweight adaptation mechanisms to further boost OOD detection performance. Comprehensive experiments demonstrate that DPM surpasses state-of-the-art methods on multiple benchmarks, highlighting the effectiveness of leveraging multimodal information for OOD detection. The proposed dual-pattern approach provides a simple yet robust framework for leveraging vision-language representations in OOD detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
氘代无糖可乐完成签到,获得积分10
刚刚
刚刚
李不乐完成签到,获得积分10
刚刚
1秒前
2秒前
forangel发布了新的文献求助10
2秒前
2秒前
yyyyyy完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
春花发布了新的文献求助10
4秒前
CodeCraft应助universe采纳,获得10
4秒前
糊涂的疾完成签到 ,获得积分10
4秒前
小蘑菇应助OnlyHarbour采纳,获得10
5秒前
DrJiang完成签到,获得积分10
5秒前
6秒前
6秒前
非言墨语发布了新的文献求助20
6秒前
爱笑大地完成签到,获得积分10
7秒前
小飞发布了新的文献求助10
7秒前
7秒前
大模型应助循环采纳,获得10
8秒前
8秒前
辛勤的觅荷完成签到,获得积分10
8秒前
研友_Z3vN0n完成签到,获得积分10
8秒前
ww发布了新的文献求助20
9秒前
闪闪的诗珊应助BJYX采纳,获得10
9秒前
9秒前
9秒前
牛牛牛应助Kunhui采纳,获得30
10秒前
自由天川完成签到,获得积分10
10秒前
lin发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
Neo完成签到,获得积分20
10秒前
LL发布了新的文献求助10
10秒前
11秒前
满意的梦完成签到,获得积分10
11秒前
平常映雁完成签到,获得积分10
12秒前
听谛9发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933