Spatio-temporal deep learning with temporal attention for indeterminate lung nodule classification

卷积神经网络 深度学习 计算机科学 人工智能 接收机工作特性 肺癌筛查 全国肺筛查试验 恶性肿瘤 机器学习 模式识别(心理学) 放射科 医学 计算机断层摄影术 病理
作者
B. Farina,R. M. Benito,David Montalvo-Garcia,David Bermejo-Peláez,Luis Seijó,María J. Ledesma‐Carbayo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:196: 110813-110813
标识
DOI:10.1016/j.compbiomed.2025.110813
摘要

Lung cancer is the leading cause of cancer-related death worldwide. Deep learning-based computer-aided diagnosis (CAD) systems in screening programs enhance malignancy prediction, assist radiologists in decision-making, and reduce inter-reader variability. However, limited research has explored the analysis of repeated annual exams of indeterminate lung nodules to improve accuracy. We introduced a novel spatio-temporal deep learning framework, the global attention convolutional recurrent neural network (globAttCRNN), to predict indeterminate lung nodule malignancy using serial screening computed tomography (CT) images from the National Lung Screening Trial (NLST) dataset. The model comprises a lightweight 2D convolutional neural network for spatial feature extraction and a recurrent neural network with a global attention module to capture the temporal evolution of lung nodules. Additionally, we proposed new strategies to handle missing data in the temporal dimension to mitigate potential biases arising from missing time steps, including temporal augmentation and temporal dropout. Our model achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.954 in an independent test set of 175 lung nodules, each detected in multiple CT scans over patient follow-up, outperforming baseline single-time and multiple-time architectures. The temporal global attention module prioritizes informative time points, enabling the model to capture key spatial and temporal features while ignoring irrelevant or redundant information. Our evaluation emphasizes its potential as a valuable tool for the diagnosis and stratification of patients at risk of lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yuki完成签到,获得积分10
1秒前
chen完成签到,获得积分10
1秒前
Owen应助眯眯眼的枕头采纳,获得10
2秒前
2秒前
风清扬应助77采纳,获得50
2秒前
受伤勒发布了新的文献求助10
3秒前
轻松的天真完成签到,获得积分10
3秒前
chen发布了新的文献求助10
4秒前
安详的沛菡完成签到,获得积分10
4秒前
5秒前
西瓜完成签到,获得积分10
5秒前
caitSith发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
11秒前
大模型应助长安采纳,获得10
11秒前
13秒前
asdqwd发布了新的文献求助30
13秒前
caitSith完成签到,获得积分10
13秒前
14秒前
huang发布了新的文献求助10
16秒前
充电宝应助等等采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
baoziya发布了新的文献求助10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
眯眯眼的枕头完成签到,获得积分10
18秒前
玉玉应助科研通管家采纳,获得20
19秒前
浮游应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
研友_85rJEL发布了新的文献求助10
19秒前
子车茗应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
asdqwd完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4549795
求助须知:如何正确求助?哪些是违规求助? 3980114
关于积分的说明 12322526
捐赠科研通 3648998
什么是DOI,文献DOI怎么找? 2009703
邀请新用户注册赠送积分活动 1045012
科研通“疑难数据库(出版商)”最低求助积分说明 933545