已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Molecule-Responsive SERS Sensors for Urine Diagnosis of Kidney Diseases Enhanced by Neural Networks

化学 尿 生物分子 分子 生物化学 内科学 医学 有机化学
作者
Jiaqi Wang,Sijun Huang,Fanxiang Meng,Qiuting Huang,Xue Xia,Weiqing Xu,Yi Guo,Guokun Liu,Weigang Wang,Ping Li,Shuping Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.5c01785
摘要

Early diagnosis of kidney disease is crucial for treatment and prognosis. Compared with kidney biopsy, a noninvasive urine-based diagnosis method of kidney disease can be more convenient and less painful for patients. Urine is closely associated with kidney disease, including nephritis, kidney failure, and kidney cancer. Since it contains various biomolecules, including small-molecule metabolites, proteins, and so on, urine is an appropriate sample for diagnosing and monitoring kidney disease progression. Herein, we developed a liquid biopsy method for diagnosing various kidney diseases based on a specific SERS sensing mode combined with neural network models, which allows an integrated response to multiple types of targets with a single probe and facilitates the detection of complex samples from multiple target groups. Compared to label-free SERS, this method relies on changes in the probe molecule, which facilitates the sensitivity of the assay. Two kinds of silver nanoparticle-casting films assist this method with the surface decoration of molecule-responsive Raman reporter molecules: p-mercaptobenzoic acid (MBA) and p-aminothiophenol (PATP). MBA responds to amino components in urine by SERS spectral changes caused by molecular polarizability. PATP illustrates the level of small-molecule metabolites in urine according to SERS changes resulting from the rate of the hot hole-catalyzed reactions. These interactions were evidenced by density functional theory and molecular docking simulations. Through these two SERS sensors, we acquired the SERS data sets of urine samples and established a classifier by incorporating neural network models, enabling the effective discrimination of healthy and kidney disease samples. The method is helpful for clinical validation and shows promise for use in long-term kidney disease monitoring programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kytwenxian发布了新的文献求助10
2秒前
稳重凝梦发布了新的文献求助10
4秒前
4秒前
今天吃不吃橙子完成签到,获得积分10
7秒前
9秒前
10秒前
隐形曼青应助丹牛采纳,获得10
11秒前
t250发布了新的文献求助10
14秒前
科研通AI6应助牧十一采纳,获得10
15秒前
17秒前
17秒前
19秒前
dai发布了新的文献求助10
20秒前
bluesiryao发布了新的文献求助10
22秒前
英俊的铭应助早点发SCI采纳,获得10
23秒前
23秒前
23秒前
现代白昼完成签到,获得积分10
24秒前
樱桃小贩完成签到,获得积分10
26秒前
百谷昙发布了新的文献求助30
26秒前
Carrie发布了新的文献求助10
26秒前
无花果应助幽幽采纳,获得10
27秒前
嘟嘟嘟完成签到 ,获得积分10
27秒前
科研通AI5应助XT666采纳,获得10
27秒前
28秒前
小蘑菇应助科研通管家采纳,获得30
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
29秒前
iNk应助科研通管家采纳,获得10
29秒前
29秒前
iNk应助科研通管家采纳,获得10
29秒前
heng完成签到,获得积分10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
30秒前
稳重凝梦完成签到,获得积分10
30秒前
nenoaowu发布了新的文献求助20
31秒前
32秒前
一只呆呆完成签到 ,获得积分10
33秒前
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4235127
求助须知:如何正确求助?哪些是违规求助? 3768602
关于积分的说明 11839703
捐赠科研通 3426251
什么是DOI,文献DOI怎么找? 1880327
邀请新用户注册赠送积分活动 932930
科研通“疑难数据库(出版商)”最低求助积分说明 839988