材料科学
热的
各向异性
辐射冷却
热辐射
辐射传输
光电子学
电子设备和系统的热管理
工程物理
二极管
危害
核工程
光学
机械工程
热力学
物理
化学
有机化学
工程类
作者
Liangyuan Qi,Wei Cai,Tianyang Cui,Junwei Li,Lei Song,Zhou, Gui,Bin Fei,Jixin Zhu,Yuan Hu,Weiyi Xing,Liangyuan Qi,Wei Cai,Tianyang Cui,Junwei Li,Lei Song,Zhou, Gui,Bin Fei,Jixin Zhu,Yuan Hu,Weiyi Xing
标识
DOI:10.1002/adfm.202508101
摘要
Abstract Radiative cooling coatings demonstrate broad applicability on equipment surfaces, spanning spacecraft to precision instruments, for sub‐ambient cooling. However, unlike conventional equipment relies on solar reflection and infrared emission for cooling, the heat‐generating equipment relies on coupled thermal conduction and radiative cooling, representing a distinct heat transfer paradigm. This study introduces an innovative fire‐safe radiative cooling‐enhanced anisotropic thermal rectification coating (TRC) by leveraging the thermal rectification effect. The rectification mechanism stems from engineered thermal conductivity gradients with temperature‐dependent anisotropy, where asymmetric phonon transport in multilayer architectures enables unidirectional heat flux control. Through the rational coupling of radiative cooling emitters at the cold terminal with thermal diodes, the TRC achieves unidirectional heat transfer enhancement through conduction‐radiation coupling, demonstrating a thermal rectification coefficient of 1.78 and 3.1–3.4 °C daytime temperature reduction below ambient. Crucially, under concurrent solar irradiation and simulated heat‐generating equipment (50 °C), TRC attains 6.8 °C maximum cooling enhancement. Notably, the TRC integrates gas‐phase and condensed‐phase flame retardant mechanisms to effectively mitigate the risk of thermal runaway in heat‐generating devices. This multifunctional integration advances radiative cooling technology toward practical implementation in thermal‐critical infrastructure, including power electronics thermal management and smart building systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI